INTRODUCTION

A final meeting of National Curriculum Revision Committee in Agriculture Engineering was held on May 3-5, 2010 at HEC Regional Centre Lahore to finalize the draft curriculum of agricultural engineering developed in the preliminary held on December 7-9, 2009 at HEC Regional Lahore.

The following attended the meetings:

Prof. Dr. Zahid Mehmood, Chairman, Department of Agriculture Engineering, NWFP University of Engineering & Technology, Peshawar.

Prof. Dr. Abdul Rehman Tahir (Late) Convener (Late) Department of Farm Machinery, University of Agriculture, Faisalabad

Prof. Dr. Maqsood Ahmad, Member Department of Environmental Management & Policy, Balochistan University of Information Technology, Engineering & Management Sciences, (BUITEMS), Quetta.

Dr. Muhammad Saffar Mirjat, Member Professor, Department of Irrigation & Drainage, Sindh Agriculture University, Tandojam.

Prof. Dr. Faizan ul Haq Khan Member Chairman, Department of Structures & Environmental Engineering University of Agriculture, Faisalabad.

Dr. Nasir Mahmood Khan, Member Additional Registrar, Pakistan Engineering Council, Attaturk Avenue (East), G-5 / 2, Islamabad.

Mr. Muhammad Naveed Aslam, Member Lecture, University College of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur.

Engr. Iqbal Zeb Khattak, Member Faculty of Agriculture, Gomal University, Dera Ismail Khan.

Dr. Muhammad Naeem Chaudhry, Member Assistant Professor,
Proceedings of Preliminary Meeting

The meeting started with the recitation from Holy Quran by Mr. Bashir Ahmad, Director HEC Regional Center, Lahore. Mr. Shafiullah, Dy. Director (Curriculum) HEC Islamabad briefed the members about the unified template of 4 year engineering programme, developed by the conveners of NCRC of engineering disciplines on April 21, 2007 at HEC Islamabad. He requested the members to revise the curriculum of B. Sc. 4 years Agricultural Engineering in line with the unified template of engineering disciplines and also recommend those books which are latest and easily available in the market. The committee then selected Prof. Abdur Rehman Tahir, as a convener and Dr. Zahid Mahmood as Secretary of the meeting. After a long discussion the members agreed on the following format for 4 year agriculture engineering program.

Objectives:

The undergraduate program in Agricultural Engineering was started in early sixties with an overall objective to train manpower for mechanized and irrigated agriculture of Pakistan. This discipline mainly involves mechanical, civil and environmental engineering principles to solve the problems of crop production and post-harvest processing. The specific objectives are to equip the students with

a. Sound engineering knowledge
b. Effective communication skills
c. High moral values and good engineering ethics
d. Good analytical skill and systematic program solving capabilities
e. Inquisitive mind to undertake research for solving engineering problems.

f. Scientific skills to manage the human and technological resources optimally

g. Effective leadership and decision making skill.

Proceedings of Final NCRC Meeting:

The meeting started with the recitation of Holy Quran. Before normal proceeding of the meeting, Fateha was offered for the departed soul of Prof. Dr. Abdul Rehman Tahir who acted as convener in the preliminary meeting. Prof. Dr. Altaf Ali G. Sheikh Member (Academics) HEC Islamabad welcomed the participants of the meeting on behalf of the Chairman HEC Islamabad. He asked them consider the comments of the expatriate Pakistani experts and expert opinion / views of the expert of the faculty and NCRC Member while finalizing the preliminary draft of Agricultural Engineering. He also told that the final draft of Engineering Agricultural will be circulated among all the relevant universities / faculty members for further improvement before final printing. He wished that maximum efforts should be made to have standard curriculum of Agricultural Engineering. After this Prof. Dr. Zahid Mehmood, was requested to act as new convener of the committee and Prof. Dr. Jehangir Khan Sial as Secretary of the final meeting. The committee then studied in detail the comments of expatriate Pakistani Expert and rectified all the courses one by one. The committee decided that the final draft will be circulated to all NCRC member and they will examine all the relevant courses assigned to them during the meeting for further improvement and development. The worthy members will send those developed courses to the convener and secretary within one week along with comments if any.
B.Sc AGRICULTURAL ENGINEERING

Duration: 4 years
Number of semesters: 8
Number of weeks per semester: 16 - 18 (minimum 16 weeks for teaching and 2 weeks for examinations)
Total number of credit hours: 136
Number of credit hours per semester: 14 - 19
Engineering Courses (Minimum): 69.88 per cent
Non-Engineering Courses (Maximum): 30.12 per cent

Non-Engineering Domain

<table>
<thead>
<tr>
<th>Knowledge Area</th>
<th>Sub Area</th>
<th>Name of Course</th>
<th>Lec CH</th>
<th>Lab CH</th>
<th>Credit Hours</th>
<th>Total Courses</th>
<th>Total Credits</th>
<th>% Area</th>
<th>% Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities</td>
<td>English</td>
<td>English Composition & Comprehension</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>14.6</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Communication & Presentation Skills</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>9.8</td>
<td>2.94</td>
</tr>
<tr>
<td>Culture</td>
<td>Islamic Studies</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>9.8</td>
<td>2.94</td>
</tr>
<tr>
<td></td>
<td>Pakistan Studies</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>9.8</td>
<td>2.94</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>Professional Ethics</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>9.8</td>
<td>2.94</td>
</tr>
<tr>
<td></td>
<td>Sociology</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>9.8</td>
<td>2.94</td>
</tr>
<tr>
<td>Management Sciences</td>
<td>--</td>
<td>Engineering Economics & Management</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>7.3</td>
<td>2.20</td>
</tr>
<tr>
<td>Natural Sciences</td>
<td>Math</td>
<td>Linear Algebra & Calculus</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>29.3</td>
<td>8.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Differential Equations & Power Series, Laplace transforms</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numerical Analysis</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>14.6</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td>Statistics & Probability</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>14.6</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td>Physics</td>
<td>Applied Physics</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>7.3</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>Industrial Chemistry</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>7.3</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>Basic Agriculture</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>14.6</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil Science</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>14.6</td>
<td>4.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total: 41</td>
<td>15</td>
<td>41</td>
<td>100</td>
<td>100</td>
<td>30.12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Math/Physics/Chemistry/Biology/Engineering Economics or related subject as appropriate for the program

Lec CH: Lecture Credit Hours, Lab CH: Laboratory Credit Hours
B Sc AGRICULTURAL ENGINEERING PROGRAM

Engineering Domain

<table>
<thead>
<tr>
<th>Knowledge Area</th>
<th>Sub Area</th>
<th>Name of Course</th>
<th>Lec CH</th>
<th>Lab CH</th>
<th>Credit Hours</th>
<th>Total Courses</th>
<th>Total Credits</th>
<th>% Area</th>
<th>% Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computing</td>
<td>Programming</td>
<td>Computer Programming</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5.26</td>
<td>3.67</td>
</tr>
<tr>
<td></td>
<td>Design</td>
<td>Computer Application in Engineering</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering</td>
<td>Fluid Mechanics</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>31</td>
<td>32.63</td>
<td>22.79</td>
</tr>
<tr>
<td></td>
<td>Foundation</td>
<td>Engineering Drawing & Graphics</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metallurgy and Workshop Practices</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil Mechanics</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manufacturing Engineering</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Mechanics</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Thermodynamics</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engineering Hydrology</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surveying and Leveling</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer Aided Design</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Based Core</td>
<td>Open Channel Hydraulics</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>36</td>
<td>37.89</td>
<td>26.47</td>
</tr>
<tr>
<td></td>
<td>(Breadth)</td>
<td>Farm Power</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mechanics of Materials</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irrigation Engineering</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine Design</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instrumentation</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drainage Engineering</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIS and Remote Sensing</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soil and Water Conservation Engineering</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farm Machinery and Earth Moving Equipment</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Based Core (Depth)</td>
<td>Pumps and Tube wells</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Processing Engineering</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Elective-I</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Elective-II</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Elective-III</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Elective-iv</td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Inter-Disciplinary Engineering | Environment Engineering | 2 | 1 | 3 |
| Engineering Breadth (Electives) | Farm Structure and Materials | 2 | 0 | 2 |

<table>
<thead>
<tr>
<th>Senior Design Project</th>
<th>Senior Design Project-I</th>
<th>0</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Senior Design Project-II</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Training (Summer)</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | | 58 | 37 | 95 |
| | | 32 | 95 | 100|</p>
<table>
<thead>
<tr>
<th>Semester 1</th>
<th>C.H</th>
<th>Semester 2</th>
<th>C.H</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Course</td>
<td>Lecture</td>
<td>Lab</td>
</tr>
<tr>
<td>1</td>
<td>Islamic Studies</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Linear Algebra & Calculus</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Applied Physics</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Fluid Mechanics</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Engineering Drawing & Graphics</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Metallurgy and Workshop Practices</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>English Composition & Comprehension</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Semester 3</td>
<td>C.H</td>
<td>Semester 4</td>
<td>C.H</td>
</tr>
<tr>
<td>No.</td>
<td>Course</td>
<td>Lecture</td>
<td>Lab</td>
</tr>
<tr>
<td>1</td>
<td>Differential Equations, Power Series, Laplace Transform</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Sociology</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Hydrology</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Surveying & Leveling *</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Computer Programming and Applications in Engineering</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Engineering Thermodynamics</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>12</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Semester 5</td>
<td>C.H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Course</td>
<td>Lecture</td>
<td>Lab</td>
</tr>
<tr>
<td>1</td>
<td>Communication & Presentation Skills</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Statistics & Probability</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Irrigation Engineering</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Elective – I</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Fundamentals of Environmental Engineering</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Instrumentation & Measurements</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 6</th>
<th>C.H</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Course</td>
</tr>
<tr>
<td>1</td>
<td>Professional Ethics</td>
</tr>
<tr>
<td>2</td>
<td>Drainage Engineering</td>
</tr>
<tr>
<td>3</td>
<td>Soil & Water Conservation Engineering</td>
</tr>
<tr>
<td>4</td>
<td>GIS & Remote Sensing</td>
</tr>
<tr>
<td>5</td>
<td>Farm Machinery & Earth Moving Equipment</td>
</tr>
<tr>
<td>6</td>
<td>Elective – II</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 7</th>
<th>C.H</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Course</td>
</tr>
<tr>
<td>1</td>
<td>Machine Design</td>
</tr>
<tr>
<td>2</td>
<td>Industrial Chemistry</td>
</tr>
<tr>
<td>3</td>
<td>Agricultural Processing Engineering</td>
</tr>
<tr>
<td>4</td>
<td>Elective-III</td>
</tr>
<tr>
<td>5</td>
<td>Project & Report I</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 8</th>
<th>C.H</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Course</td>
</tr>
<tr>
<td>1</td>
<td>Elective-IV</td>
</tr>
<tr>
<td>2</td>
<td>Engineering Economics & Management</td>
</tr>
<tr>
<td>3</td>
<td>Numerical Analysis</td>
</tr>
<tr>
<td>4</td>
<td>Pumps and Tube wells</td>
</tr>
<tr>
<td>5</td>
<td>Project & Report II</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours</td>
</tr>
</tbody>
</table>

Total Credit Hours for B. Sc Agricultural Engineering 136

Note:
1. * A mandatory two to three weeks survey camp to be arranged during summer semester after 4th semester
2. A supervised internship training to be arranged by the institution after 6th semester as the requirement of the degree.
3. Project & Report will be completed in two Semesters (i.e. 7th & 8th Semesters)
BSc ENGINEERING PROGRAM

Summary

<table>
<thead>
<tr>
<th>Domain</th>
<th>Knowledge Area</th>
<th>Total</th>
<th>Total</th>
<th>% Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Engineering</td>
<td>Humanities</td>
<td>14</td>
<td>14</td>
<td>30.12</td>
</tr>
<tr>
<td></td>
<td>Management Sciences</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Natural Sciences</td>
<td>24</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>41</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>Computing</td>
<td>5</td>
<td>5</td>
<td>69.88</td>
</tr>
<tr>
<td></td>
<td>Engineering Foundation</td>
<td>28</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Based Core (Breadth)</td>
<td>33</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Based Core (Depth)</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inter-Disciplinary Engineering</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Breadth (Electives)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Senior Design Project</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial Training (Summer)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>95</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>136</td>
<td>136</td>
<td>100</td>
</tr>
</tbody>
</table>

The curriculum design is based on the concept of foundation, breadth and depth courses so that streams for different specializations can be created within each discipline.

Foundation Courses: The foundation courses are the courses that all students in a given discipline of engineering must take. These courses provide students with the fundamental concepts and tools to pursue their studies at the higher level.

Breadth Courses: The breadth courses introduce students to different specialties in the given discipline of engineering early in their studies. Before taking the breadth courses, the students should be advised that their choices will affect taking follow up courses because of pre-requisite requirement.

Depth Courses: The depth courses offer specialization within each engineering discipline. All depth courses must integrate a substantial design component.

The students may select electives from any of the areas of specialization with some guidelines from their respective advisors.
Course Title: Islamic Studies 2(2-0)

Objectives:
This course is aimed at:
1. To provide basic information about Islamic studies
2. To enhance understanding of the students regarding Islamic civilization
3. To improve students skill to perform prayers and other worships
4. To enhance the skill of the students for understanding issues related to faith and religious life.

DETAIL OF COURSES

INTRODUCTION TO QURANIC STUDIES
1) Basic concepts of the Holy Quran
2) History of the Holy Quran
3) Uloom-ul-Quran

STUDY OF SELECTED TEXT OF THE HOLY QURAN
1) Verses of Surah Al-Baqra Related to Faith (Verse No-284-286)
2) Verses of Surah Al-Hujrat Related to Adab Al-Nabi (Verse No-1-18)
3) Verses of Surah Al-Mumanoon Related to Characteristics of faithful (Verse No-1-11)
4) Verses of Surah Al-Furqan Related to Social Ethics (Verse No.63-77)
5) Verses of Surah Al-Inam Related to Ihkam(Verse No-152-154)

STUDY OF SELECTED TEXT OF THE HOLY QURAN
1) Verses of Surah Al-Ihzab Related to Adab al-Nabi (Verse No.6,21,40,56,57,58.)
2) Verses of Surah Al-Hashar (18,19,20) Related to thinking, Day of Judgment
3) Verses of Surah Al-Saf Related to Tafakar,Tadabar (Verse No-1,14)

SEERAT OF THE HOLY PROPHET (S.A.W) I
1) Life of Muhammad Bin Abdullah (Before Prophet Hood)
2) Life of Holy Prophet (S.A.W) in Makkah
3) Important Lessons Derived from the life of Holy Prophet in Makkah

SEERAT OF THE HOLY PROPHET (S.A.W) II
1) Life of Holy Prophet (S.A.W) in Madina
2) Important Events of Life Holy Prophet in Madina
3) Important Lessons Derived from the life of Holy Prophet in Madina
INTRODUCTION TO SUNNAH
1) Basic Concepts of Hadith
2) History of Hadith
3) Kinds of Hadith
4) Uloom –ul-Hadith
5) Sunnah & Hadith
6) Legal Position of Sunnah

SELECTED STUDY FROM TEXT OF HADITH

INTRODUCTION TO ISLAMIC LAW & JURISPRUDENCE
1) Basic Concepts of Islamic Law & Jurisprudence
2) History & Importance of Islamic Law & Jurisprudence
3) Sources of Islamic Law & Jurisprudence
4) Nature of Differences in Islamic Law
5) Islam and Sectarianism

ISLAMIC CULTURE & CIVILIZATION
1) Basic Concepts of Islamic Culture & Civilization
2) Historical Development of Islamic Culture & Civilization
3) Characteristics of Islamic Culture & Civilization
4) Islamic Culture & Civilization and Contemporary Issues

ISLAM & SCIENCE
1) Basic Concepts of Islam & Science
2) Contributions of Muslims in the Development of Science
3) Quranic & Science

ISLAMIC ECONOMIC SYSTEM
1) Basic Concepts of Islamic Economic System
2) Means of Distribution of wealth in Islamic Economics
3) Islamic Concept of Riba
4) Islamic Ways of Trade & Commerce

POLITICAL SYSTEM OF ISLAM
1) Basic Concepts of Islamic Political System
2) Islamic Concept of Sovereignty
3) Basic Institutions of Govt. in Islam

ISLAMIC HISTORY
1) Period of Khlaft-e-rashida
2) Period of Ummayyads
3) Period of Abbasids

SOCIAL SYSTEM OF ISLAM
1) Basic Concepts of Social System of Islam
2) Elements of Family
3) Ethical Values of Islam
REFERENCE BOOKS:
1) Hameed ullah Muhammad, “Emergence of Islam”, IRI, Islamabad
2) Hameed ullah Muhammad, “Muslim Conduct of State”
3) Hameed ullah Muhammad, “Introduction to Islam”
4) Mulana Muhammad Yousaf Islahi, “
6) Ahmad Hasan, “Principles of Islamic Jurisprudence”
 Islamic Research Institute, International Islamic University, Islamabad (1993)
7) Mir Waliullah, “Muslim Jurisprudence and the Quranic Law of Crimes”
 Islamic Book Service (1982)
9) Dr. Muhammad Zia-ul-Haq, “Introduction to Al Sharia Al Islamia”
 Allama Iqbal Open University, Islamabad (2001).
Course Title: Linear Algebra and Calculus 3(3-0)

Objective:
To learn fundamental concepts of algebra & calculus required for engineering undergraduates

Vector Algebra
Introduction to scalars and vectors, vectors in a plane, scalar and vector products, Line in \mathbb{R}^2, \mathbb{R}^3 and planes, Spheres, Orthogonal Projections, Perpendicular distance from a point to a line and a plane, vector spaces, Subspaces, Linear combinations, linearly dependent and interdependent set of vectors, Spanning of a vector spaces, Bases of a vector spaces and its application in engineering and a business.

Matrix Algebra
Introduction to matrices, Matrix operations, matrix operations, Inverse Matrix, Rank of a matrix, Echelon form of a Matrix and its applications in our daily life situation problems, i.e., in line–communication as Air lines, Telephone-lines, Connecting cities by roads.

Determinants
Determinant and its properties, Inverse of a Matrix, Rank of a Matrix, Linearly dependent and independent by determinants.

Linear System of equations

Linear Transformation
Reflection operators, Projection operators, Rotation operators, Shear in X and Y directions, Dilation and contraction.

Eigen Values and Eigen Vectors
Eigen values and Eigen vectors and its applications as deformations, Markov processes as Mass Transit Problems, Forecasting of weather and to develop the solution of the system of differential equations for Mechanical systems/Electrical systems and Agricultural/Civil Engineering especially in Public Health Engineering Problems.
Single Variable Calculus

Basic concepts of single variable function, continuous, discontinuous and piecewise continuous functions, periodic, odd and even functions, algebraic functions, transcendental functions and its graphical representations, applications of functions in our daily life situations.

Differential Calculus

Limits and continuity, interpretation of a derivative, geometric interpretation, total differential and its applications in our daily life situations, the use of a table of different type derivatives, higher order derivatives, tangents and normal, approximations of a function at a particular point by Taylor’s and Maclaurin’s series, maximum and minimum values of a function, the first derivative test, the second derivative test, point of inflexion and its applications in business and engineering.

Integral Calculus

Basic concepts of integration, a table of integral formulas, some rules of integration, definite integrals, the area bounded by a curve, integration by parts, integration as the limit of a sum, volume revolution, and its application in daily life situations.

Multivariate Calculus

Basic concepts of multivariate function, level curves and surfaces, limit and continuity, partial differentiation, vector functions and its differentiation and integration, the directional derivative, the gradient, scalar and vector fields, normal properties of the gradient, divergence, curl, tangents planes and normal lines, extreme of functions of two variables, second partial test, extreme value theorem, methods of constrained optimization and LaGrange multipliers.

RECOMMENDED BOOKS

1. Mathematics for Engineers Second Edition by Robert Davison, Addison Wesley

Course Title Fluid Mechanics Credit Hours: 3(2-1)

Objective:
• To study the fundamentals of fluid mechanics including statics and kinematics, concept of energy, momentum, forces and flow measurement

Fundamentals of Fluid Mechanics:
Definition and branches of fluid mechanics, distinction between solid and fluids, Properties of fluids: density, viscosity, surface tension, specific weight, specific gravity, etc., bulk modules of elasticity, compressibility of fluids.

Fluid statics:
Pressure variations in a fluid, pressure measuring devices, gauges and manometers, buoyancy and stability of submerged and floating bodies, forces on plane and curved surfaces, center of pressure.

Fluid kinematics:
Types of flow, dimensions of flow, streamlines, path lines, flow patterns for different references, continuity equation, source flow, sink flow, flow nets, uses and limitations of flow net.

Energy Consideration in Steady flow:
General equations of steady flow, heads, Bernoulli’s equation and its practical applications, hydraulic and energy grade lines, power consideration in fluid flow, cavitations, head losses, solution of flow problems.

Momentum and forces in fluid flow:
Impulse-momentum principle and application, force exerted on a stationary and moving bodies (flat and curved), relation between absolute and relative velocities, reaction of a jet, jet propulsion, torque in rotating machines.

Fluid Flow Measurements:
Orifices, weirs, notches and venture meter, pitot tube, coefficient of contraction, velocity and discharge, derivation of their discharge formulae and their applications.
Practical:

- Demonstration of various parts of hydraulic bench
- Experimental study of laminar and turbulent flow
- Experimental study of tube gauges and dead weight pressure gauges
- Calibration of orifices by various methods
- Calibration of Venturimeter
- Calibration of rectangular and triangular notch
- Verification of Bernoulli’s theorem
- Determination of metacentric height
- Viscosity of a given fluid by viscometer
- Drag on a small sphere.

Books Recommended
Course Title: Engineering Drawing & Graphics 2(1-1)

Objective:

- To enable the students to understand fundamentals of orthographic projections

Introduction:

Introduction to engineering drawing, various types of lines, basic geometrical constructions, conic sections, theory of orthographic projection, dimensioning & lettering, Introduction to tolerance, projections off points, projections of straight lines, Projections of planes and solids in simple position, sectioning of solids, Isometric projections, development of surfaces.

Practical

Introduction to drawing instruments and their use, various scales, practice of orthographic projection missing lines in orthographic projection, Drawing three views of different objects, Practice of Dimensioning and Lettering, Practice of Sectioning, Conversion of orthographic projection into isometric view, Creating drawings of Engineering Fasteners like Rivets, Cotters Joints, threads etc.

Books Recommended
Course Title: Applied Physics 3(2-1)

Objectives: Acquaintance of students with the physics of electrical and electronic materials, Components and devices

Contents:

Practicals:
- Construction of wiring systems, fuses, switches of various types insulators
- Circuits design and drawing of a typical farm electrical system.
- Selection of motor for various farm equipment such as forage cutter, feed-grinders, and shop tools.
- Practice on repair and adjustment of electric motors, switches, fuses, transmission wiring controls
- Study of 3 phase induction motor
- Study of star and delta connections
- Study of semiconductor, triode, diode valve and transistors.
- Use of AVO meter, CRO, plani meter
- Fabrication of full wave rectifier and inductance study of its wave-shape.
- Measurement of self inductance and mutual inductance

Books Recommended:
Course Title: Metallurgy and Workshop Practices 3(2-1)

Production and properties of common engineering materials: Ferrous metals, iron ores, properties and uses of pig iron, cast iron, wrought iron, steel, standard processes of manufacturing of Iron and steel, open hearth process, basic oxygen processes, production of ingots. Composition / properties and uses of plastics, rubber, fiber glass and composite materials.

Alloy steel and Irons: Effect of alloying elements, the AISI/SAE alloy steel and their identification, corrosion resistant steel, steel for high temperature services, alloy steel.

Welding: Definition, types of welding process, survey of welding equipment. Arc welding; Current rating, welding materials, arc welding processes, inspection and testing of welded joints. Gas welding; Welding flames and materials, cutting of metals, gas welding processes.

Foundry: Definition, importance, advantages and disadvantages of foundry, casting, hand moulding tools, characteristics of moulding sand, foundry cores, properties of core and, crucibles, handling and care, copula furnace, construction, zone of copula and its advantages.

Safety and First Aid: Safety in the shop, mechanical and other accidents, safety devices, safety methods, first aid equipment and methods, care and order in the workshop.

Practicals
1. Identification of tools and machines in the workshop.
2. Identification of different metals by spark tests and advance methods.
3. Demonstration of different heat treatment processes.
4. Practice of arc welding.
5. Practice of gas welding.
6. Safety and first aid in the workshop related to electrical, mechanical and other accidents. Safety in the use of hand tools.
7. Visits to local foundries.

Books Recommended
Course Title: English Composition and Comprehension 2(2-0)

Objectives:
To enhance students language skills and develop their critical thinking

Composition (8 weeks)

- Vocabulary Building skills
- Words & expressions commonly misused.
- Articles; their use, Prepositions; Prepositional phrases.
- Punctuations
- Common Grammatical mistakes
- Elementary Principles of Composition
- Relative Pronouns & Clauses
- Conditional Sentences & types
- Adverbs & Adjectives; their forms & use

Comprehension (8 weeks)

- Getting the essential information
 Finding the main idea
 Defining vocabulary in context
 Practice
- Order of importance
 Using order in the writing to determine what is most important to the author
 Similarities & Differences; using comparisons to determine the author's attitude
 Sentence structure, degree of detail, description & tone.
 Practice
- Critical reading & thinking
 Evaluating evidence and author credibility, rejecting faulty reasoning Reading across the curriculum; asking the right questions to get the most out of reading in the natural sciences, social sciences & Humanities
- Drawing Conclusions; putting it all together
SEMESTER – 2

Course Title: PAKISTAN STUDIES 2(2-0)

Objectives

- To develop vision of historical perspective, government, politics, contemporary Pakistan, ideological background of Pakistan.
- To study the process of governance, national development, issues arising in the modern age and posing challenges to Pakistan.

Course Contents

1. Historical Perspective
 b. Factors leading to Muslim separatism
 c. People and Land
 i. Indus Civilization
 ii. Muslim advent
 iii. Location and Geo-Physical features.

2. Government and Politics in Pakistan

 Political and constitutional phases:
 a. 1947-58
 b. 1958-71
 c. 1971-77
 d. 1977-88
 e. 1988-99
 f. 1999 onward

3. Contemporary Pakistan

 a. Economic institutions and issues
 b. Society and social structure
 c. Ethnicity
 d. Foreign policy of Pakistan and challenges
 e. Futuristic outlook of Pakistan
Recommended Books:

Course Title: Basic Agriculture 3(2-1)

Objective:

To familiarize students with the basic concepts of crop husbandry

Introduction

Introduction to the Engineering Profession and its Fields of Specialization with particular emphasis on Agricultural Engineering.

Crop Production

Major crops of Pakistan, Factors affecting crop production and distribution. Requirements for agricultural development. Classification of field crops based on agronomic use, special purpose and other basis.

Seed Technology

Role of seed in crop production. Concept of seed technology. Seed Structure and growth, Dormancy, Seed Production and its quality, Seed Processing and Seed Storage.

Farming Systems and Tillage Practices

Dry Land Farming

Introduction, Importance, Rainfall pattern, Barani cultivation practices, Barani Agro-ecological zones, Problems and constraints of dry land, Dry land improvement, Dry land management, Barani cropping system

Land Resources and Management

Soil zones and Soil resources of Pakistan. Sustainability of land resources. Managing soil resources

Agro-Meteorology

Introduction, Weather and climate, Climatic components, Classification of climates, Climatic factors and crop production
Agro-Ecology

Introduction, Agro-ecological Features of Pakistan, Agro-ecological zones, Agro-ecology of Punjab

RECOMMENDED BOOKS

Objective:
Learning basics of soils in agricultural engineering perspective.

Contents:

Soil Perspective

Important Physical Properties of Mineral Soils

Soil Colloids

General constitution of Silicate clays, Adsorbed cations, Silicate clay structure, Classification of Silicate clays, Chemical Composition of silicate clays, Cation exchange capacity of soils, Plasticity, Cohesion, Swelling, Shrinkage, Dispersion and Flocculation.

Soil Water

Soil Air and Soil Temperature

Soil aeration definition, soil aeration problems in the field, Composition of soil air., Factors affecting the composition of soil air, Fick’s Law, Aeration in relation to soil and crop management. Soil temperature, Specific Heat of soils, Volumetric Heat Capacity, Thermal diffusivity, and Conductivity, Fourier’s Law, Movement of Heat in soil, Soil temperature control.
Plant Nutrients and Fertilizers

Factors controlling the growth of higher plants, The essential elements from air, water and soil, Soil solution, Soil and plant interrelations, fertilizer elements, Nitrogen Fertilizers, Phosphates Fertilizers, Potassium Fertilizers, Mixed Fertilizers, Methods of applying solid fertilizers, Application of liquid Fertilizers.

Saline and Sodic Soils

Climate and salinity, Some basic terms, Saline, Saline alkali and Sodic Soils, Diagnosis of Saline and Sodic Soils, Reclamation Steps of Salt-affected soils, Leaching Requirements, Crop tolerance to Salinity.

Recommended Books:

Course Title: Manufacturing Engineering 3(2-1)

Objective:

Student’s preparation in the processes required for manufacturing agricultural machines.

Contents:

Turning and related operations: Lathe, construction, types of lathes, accessories, lathe operations, turret lathe; construction, types, turret lathe tooling, chip formation, mechanism of chip formation, cutting tool materials, tool failure and tool life.

Shaping and planning: shaper; classifications, functions, shaper drive mechanism, shaper speeds and machining times, planning, construction and types, work set up, planer tools, metal bending and sheet rolling processes.

Drilling and reaming: Drilling; types and sizes, drill chucks. Counter boring, counter sinking, reaming, drilling machine types, and estimating drilling time.

Milling: Definition, milling operations, milling cutters, milling machines types, size, accessories, dividing head, estimating milling time.

Gear manufacturing: Gear terminology, gear types, basic methods for machining gears.

Computer-aided manufacturing (CAM) and computer – integrated manufacturing (CIM) Systems: Machine tools control, numerical control system, computerized numerical control system (CNC) programming for numerical control. Automatic machines, transfer machines, computer aided- manufacturing (CAM), computer simulation of manufacturing process and system. Automated assembly use of mechanical hands/Industrial Robots, concept of computer-integrated automation system (unmanned factory)

Practical

1. Fabrication of various machine elements using lathe.
2. Making a slot on a shaft for a cotter pin using shaper and milling machines
3. Cutting threads using milling and lathe machines
5. Making bends of metal sheet using sheet rolling machines
6. Fabrication of a given agricultural machinery part.
7. Local visits to agricultural Machinery Manufacturing Industries.

Books Recommended.

Course Title: Engineering Mechanics 3(2-1)

Objectives:

Teaching basic principles of force analyses in engineering systems

Contents:

Concept of measurement of mass, force, time and space, Systems of units, Fundamentals & Derived units, Conversion of units, required Accuracy of results, General Principles of Statics, Vector addition, Subtraction and Products, Resultant of Distributed (Linear & Non-linear) force Systems, General conditions of equilibrium of Co-planer forces, Laws of Triangle, Parallelogram and Polygon of forces, Types of beams, Supports and Loads, Simple cases of Axial forces, Shear forces and Bending Moment diagrams, Problem involving friction on Flat surfaces, Geometrical Properties of Plane Areas, Work, Energy, Power, Impulse, Momentum, Conservation of Momentum and Energy, Rectilinear and Curvilinear motions, Tangential and Normal Components of Acceleration, Simple Harmonic motion

Practical:

- To verify the law of polygon of forces, the law of parallelogram of forces, the principles of moments, the co-efficient of friction between surfaces. Special numerical problems and assignments
- Moment of inertia of fly wheel mounted on wall and a wooden block by suspension. Efficiency of various models of machines. Modulus of rigidity of metal bar by static and dynamic methods. Special numerical problems and assignments.

Books Recommended:

Course Title: Computer Aided Design Credit Hours: 3(2-1)

Practical:
Drawing and working problems in AutoCAD mechanical power pack package.

RECOMMENDED BOOKS

1. Introduction Engineering Drawing, by A.C. Parkinson. Pintman & Sons

SEMESTER - 3

Course Title: Differential Equations, Power Series Laplace Transform 3(3-0)

Objectives:
To introduce basic technology pertaining to formulation / solution of differential equations and power series.

Contents:

Ordinary Differential Equation

Basic concepts of ordinary differential equation, General and particular solution, Initial and boundary condition, Linear and nonlinear differential equations, Solution of first order differential equation by separable variables and its application in our daily life situations, Techniques like change in variables homogeneous, non-homogeneous, exact, non-exact, linear and non-linear Bernoulli could be used in case of complications. Solution of second order differential equations by theory of operators and its application as forced and free oscillations, the extension of second order solution criteria to high order differential equations, solution of the system of differential equations by theory of operators and its application in daily life situations.

Partial Differential Equations

Basic Concepts, linear and non-linear P.D equations, Quasi linear and Quasi non-linear P.D equations, homogenous and non-homogenous P.D equations, solutions of P.D equations, boundary and initial conditions as dirichlet conditions, Neumann’s condition, Robin’s/mixed condition, classification of P.D equations as Elliptic conditions, Parabolic and hyperbolic.

Analytic Solution by separation of Variables of the Steady State, two dimensional heat equation/Laplace equation and un-steady one dimensional heat equation/Diffusion equation with homogenous and non-homogenous boundary conditions. D’Alembert’s solution of two dimensional wave equation homogenous and non-homogenous boundary conditions.

Fourier Series

Periodic waveforms and their Fourier representations, calculating a Fourier series, Fourier series of odd and even functions, Half range Fourier series, Fourier series solution for the above P.D equations.
Recommended Books:

Course Title: SOCIOLOGY Credit Hours: 2(2-0)

Objective:
- Enabling to develop understanding regarding social issues, culture, system and knowledge / competency to design / analyses various relevant social aspect / data

Content:

Introduction: Field of Rural Sociology; Rural Sociology as a Science; Rural Sociology and Other Social Sciences. Basic Concepts and Processes: An understanding of the Rural Social System, Caste and "baradari" structure, Factions, dispute and "We-groups", Problems of small and fragmented holding, landless tenants and agricultural labor. Social stratification and social differentiation.

BOOKS RECOMMENDED:
- Dalal, B.2003. Rural Planning in Developing Countries, New Delhi, Earthscan.

• Khan, Nowshad (2000) Rural Poverty Alleviation, National Book Foundation, Islamabad

Course Title: Engineering Thermodynamics 3(2-1)

Objectives:

To give basic understanding of the heat-energy relationship to the engineering undergraduates

Contents:

Heating and expansion of gases, Units of heat, gases and vapors, constant volume and constant pressure, P-V diagram, specific heat of gases, internal energy of gas, law of conservation of energy, methods of heating and expanding gases and vapors, work done by gas in expanding.

Laws of perfect gases: The two laws of thermodynamics, the heating of gases, equations for different types of heating methods.

Air cycles: Cycles of operation, air standard efficiency of a cycle, reversible Process, reversible cycles, reversibility and efficiency, Carnot cycle, Otto cycle, diesel cycle, mean effective pressure.

Entropy of gases: Entropy and heat, T-S diagrams, Carnot, Otto, diesel and dual combustion cycles on T-S diagrams.

Air compressors: functions, compressor types, , reciprocating and rotary compressors, single and multistage compressors, cylinder clearance, work done, compressor efficiency.

Compound expansion: advantages of compound expansion, tandem type of two- cylinder compound engine, receiver type compound engine; combined indicator diagram for compound engine. Calculations for cylinder uniflow engine.

Refrigeration: Co efficient of performance, units of refrigeration, air compression refrigeration, vapor compression refrigeration, refrigeration cycles, rating, quality of refrigerant and general considerations, components of refrigeration system, heat pumps.

Practicals:

1. Study of working principles of two stroke and four stroke engines using models.
2. Demonstration of Joule's law.
3. Study of rotary and reciprocating air compressors and their characteristic curves.
4. Study of PV diagram of diesel/gasoline engines.
5. Analysis of engine flue gases for CO, CO2, NO2, etc.
6. Determination of energy content of different fuels using calorimeter.
7. Study of heat transfer using refrigeration and air conditioning cycle.
9. Determination of flash point and fire point of different petroleum products.

Books Recommended:

Course Title: Engineering Hydrology 3(2-1)

Objective:
- To acquaint the students with the basics of hydrologic cycle and their analysis.
- Introduce stream flow components, flood routing, and hydrology model.

Contents:
Hydrologic processes: Introduction, Hydrologic cycle and its components, importance of hydrology, climatic factors, estimation of precipitable water, snowcover and snow fall, stream flow, water stage, discharge, interpretation of stream flow data evaporation and transpiration, Evapotranspiration and its estimate using different methods.

Hydrologic Analysis: Hydrograph and its characteristics, run off and its components, recessions, hydrograph separation, rainfall-runoff relations, phenomenon of runoff estimating the volume of storm runoff, estimating snow melt runoff, seasonal and annual runoff relations, hydrograph of runoff unit hydrograph its derivation and application, overland flow.

Hydrologic Models: definition, classification of models, development, calibration, verification and application of models.

Practicals:
- Demonstration of weather recording instruments and practice in taking actual data from weather stations including a visit to weather station.
- Measuring runoff in the field by different techniques.
- Development of unit hydrograph and its use.
- Frequency analysis of rainfall data.
- Measuring infiltration rate in the field.

Books Recommended:
Course Title: Surveying and Leveling 4(2-2)

Objectives:
1. Enabling students to understand theory and practice of land surveying and leveling.
2. Developing skills for using modern survey instruments for above objective.

Introduction
Surveying instruments: Chains, Tapes, Steel Bands, their Types and Uses

Chain Surveying
Ranging and chaining of survey Lines. Fieldwork and plotting of chain survey.

Compass Surveying
Prismatic Compass and Surveyor Compass, Uses, Bearing, Local Attraction, Fieldwork and Plotting

Plane Table Surveying
Parts and Accessories, Methods of Surveying, Two Point and Three Point Problems

Leveling
General Principle, Types of Levels and their temporary and Permanent Adjustments, Methods of Leveling, Reduction of Level, Precise Leveling and Trignometric Leveling

Theodolite
Types and uses of Theodolites, Temporary and Permanent Adjustments, Measurement of Horizontal and Vertical angles

Tachometrical Surveying
Methods of Tachometric Surveying. Fieldwork and computations.

Traversing
Traversing with Prismatic Compass, Theodolite and Plane Table, Computations and Adjustments of Traverse, Transformation of Co-ordinates

Omitted Measurements
Calculation of Areas and Volumes

Earth work calculation, D.M.D method, Simpson rule and Trapezoidal rule

Practicals:

1. Practice on measurement of distances and introduction to measuring instruments
2. Chain Surveying and plotting
3. Compass Traversing
4. Plane Table by methods of radiations and intersections
5. Two Points Problem
6. Three Points Problem
7. Level adjustments by Two-Peg method
8. Profile and Cross-Sectioning
9. Theodolite Traversing

Books Recommended:

Computer Programming and Applications in Engineering 3(1-2)

Objectives:
Students’ preparation in computer programming and its applications in engineering

Contents:

Introduction: Computer components, operating system, software & applications.

Programming: Introduction, programming languages, flowchart, programming structure, introduction to C++, application of C++ to solve engineering problems, modeling and simulation.

Practicals:
- Demonstration of computer components and Windows installation.
- Exercise on the use of word processing, spreadsheet and engineering graphics.
- Programming of engineering problems with C++.

Books Recommended:
Objective:
To study the basic concepts of fluid flow, principles of energy, momentum, and characteristics of different hydraulic structures used in open channel.

Contents:

Basic Concepts of Fluid Flow
Types, state and regimes of flow, channel flow types, channel geometry, measurement of velocity in channel, velocity distribution in channel and its coefficients, pressure distribution in channel, effect of slope on pressure distribution.

Energy and Momentum Principle
Basic equations, specific energy, specific energy and alternate depths, E-Y relationship, criteria for a critical state of flow, computation of critical flow, control of flow, application of flow control in rectangular channel, momentum in open channel flow, specific momentum, hydraulic jump, M-Y relationship.

Uniform Flow
Establishment of uniform flow. The Chezy’s and Manning’s equations, resistance coefficient estimation, normal depth and velocity, normal and critical slopes, free board, best hydraulic section, determination of section dimensions.

Rapidly Varied Flow
Characteristics of varied flow, sharp crested weir, aeration of the nappe crest shape and discharge over spillway, type and characteristics of the hydraulic jump, jump as energy dissipater, flow through sudden transitions.

Practicals:

- Determination of discharging in open channel through different methods.
- Development of stage-discharge curve (Y-Q Relationship)
- Development of hydraulic jump
- Flow through/over different hydraulic structures
- Determination of critical flow, critical depth, alternative depth
- Determination of Chezy and Manning n for a rectangular prismatic channel
- Plotting flow profile of an open channel
Recommended Books:

Course Title: Soil Mechanics 3(2-1)

Objective:

Developing an understanding about the physical properties of soils pertinent to crop production

Soil Formation

Physical Properties

Water Content, Void Ratio, Porosity, Degree of Saturation, Specific Gravity, Unit Weight and their determination, Atterberg limits, Sieve Analysis, Hydrometer and Pipette Analysis, Stoke’s Law, Grain Size distribution

Classification of Soils

Grain Size Classification; Bureau of Soils, M.I.T. Unified, AASHTO and ASTM Classification systems. Textural Classification by Triangular Chart, Unified Soil Classification, AASHTO Soil Classifications.

Permeability and Seepage

Definition, Hydraulic Gradient, Darcy’s Law, Factors affecting Permeability, Permeability of stratified soils, Laboratory and Field determination of coefficient of Permeability, Seepage Force, Quick Sand Condition, Flow nets, Boundary Conditions, Graphical Method of Flow net construction, Determination of Quantity of Seepage, Two Dimensional Flow, Laplace Equation, seepage through Earth Dams, Design of Filters

Compaction

Purpose and theory of Compaction, Moisture Content and Dry Density relationship, Standard Proctor Compaction Test, Modified Proctor compaction Test, Degree of Compaction and its determination in the Field. Methods of compaction in the field; Factors affecting compaction of soils

Vertical Stresses in Soils

Definition, Stresses caused by self weight of soil, Geostatic stresses, stresses caused by Point Loads and Uniformly distributed Loads: Boussinesq and Westergard theories, Pressure bulb, Stress distribution diagram on horizontal and vertical, Stress at a point outside loaded area, Newmark’s charts and 2:1 Method
Soil Exploration

Importance of Soil Exploration, Soil Exploration methods, Probing, Test Trenches and Pits, Auger boring, wash boring, rotary boring, Percussion drilling and Geophysical methods, Soil Samples, Disturbed and Un-disturbed samples, In-situ Tests (SPT, CPT and PLT)

Practicals

1. Identification of Soil (Visual and Manual)
2. Determination of Moisture Content of Soil
3. Determination of Specific Gravity of Soil
4. Determination of Liquid Limit of Soil
5. Grain Analysis of Soil (including both Mechanical and Hydrometer Analysis)
6. Determination of Plastic Limit and Plasticity Index of Soil
7. Determination of Shrinkage Limit of Soil
8. Classification of Soil according to AASHTO and USCS
9. Modified/Proctor Compaction Test
10. Constant Head Permeability Test (Granular Soil)
11. Falling Head Permeability (Granular and Fine Grained Soils)

RECOMMENDED BOOKS

Course Title: Farm Power

Objective:

Providing instructions relating components of I.C. engine, tractor components and their operations

Contents:

Introduction: History of engine development, engine cycles, principles of operation, types of engines.

Principal parts of engine: Functions, construction, cylinder, cylinder heads, liner, crank case, piston, connecting rod, crank shaft, clutch, flywheel, valves and their operation, valve mechanism.

Fuels and combustion: Types of engine fuels, fuel tests and their significance, gasoline tests, antiknock test, octane number, volatility, Reid vapour pressure, sulphur content, gun content, heat values, gasoline additives. Engine emissions and their analysis.

Ignition system: Types of ignition, spark, magneto and compression ignition, induction coils, distributor, spark plug, contact-breaker points, condenser, trouble shooting.

Cooling system: Types, principle of operation, parts of air/water cooling system, line diagram, radiator, thermostat, water pump, fan, engine heating, repair and maintenance, types of coolants.

Lubrication system: Types, principle of operation, components of lubrication systems, line diagram, types of lubricants, trouble shooting.

Electrical System: A.C. and D.C. voltage, alternator/dynamo, battery, battery charging and maintenance, self starter, electrical gauges and controls, line diagram, repair and maintenance.

Intake and exhaust system: Air intake system, air cleaner, supper charger, turbo charger, inter-cooling, and construction of intake and exhaust manifolds, mufflers, flue gases.

Mechanics of the Farm Tractor Chassis: Force Analysis, Soil reaction, Draw bar pull, Stability of tractors, Tipping and lateral stability

Clutch and Brakes
Transmission, Differentials, Power take-off, Pulley drives, Power lift and hydraulic controls. Tractors tests and performance

Farm Management: Farm planning for efficient use of resources and attainment of business goals and farm accounting.

Practicals:
- Study of main components of engine and engine types.
- Study of valve system and its adjustments.
- Demonstration of fuel system, cooling system and electrical system of tractor.
- Measurement of air pressure/air fuel ratio in each cylinder of engine.
- Fuel injector, pump adjustment and calibration.
- Demonstration of engine lubrication system.
- Servicing of a single cylinder diesel engine.
- Removal of air lock of a diesel engine.
- Battery testing for charging/discharging.
- Engine diagnostics-analysis of engine emissions using gas analyzer, multi-scan, etc.
- Tour to tractor industry (Millat Tractors Limited, Al-Ghazi Tractors, Ltd)

Books Recommended:

Course Title: LANDSCAPE ENGINEERING 3(2-1)

Theory:
Introduction, importance of landscaping, gardening and its design, principles and elements of landscape design, landscape design materials, types of designs; formal and informal garden designs, Chinese and Japanese gardening, rockeries, terrace, roof and water gardens, plants suitable for various designs, landscape designs for public and private buildings, parks and playgrounds etc., highway and roadside plantations, developmental cost estimates for landscape.

Earth work estimates; Techniques, fields surveys, surveying equipment, preparations for field surveys, cut-fills and contour mapping, cost estimations. Selection and design of gun, drip, sprinkler, pivot, bubbler, pop-up irrigation systems, comparative cost estimates for various modes of irrigations.

Practical:
Visits to different parks and gardens, landscape designs for private and community houses, schools, colleges, universities, municipal and national parks, industrial areas and roadsides; establishing various types of gardens. Field surveys for earthwork estimates as per maps. Designs of irrigation systems, exercises in search for state of the art information

Books Recommended:

Course Title: Mechanics of Materials 3(2-1)

Objectives:
Developing an understanding of design of building and machine elements from stress – strain standpoint.

Contents:

Stress and strains: Stress at a point, components of stress, analysis of plane stress, principle stresses, maximum shear stress, Mohr’s circle.

Axial loading: Stress due to axial forces, strain, properties of material under axial loading.

Bending: Bending stresses in beams, shear and bending moment diagrams.

Combined loading: Stresses due to axial, bending and torsional loading.

Deflection: Moment-curvature relationship, deflection of beams by the method of double integration.

Deflection of beams: Double integration method with singularity function, area moment method
Torsion: Shearing stress and angle of twist, hollow and circular shafts.

Buckling: Pin ended column, eccentrically loaded column, initially curved column, critical loads and critical stresses.

Curved beams: Stresses in curved bars.

Cylinders and spheres: Stresses in thin and thick walled cylinders.

Fatigue loading: analysis and design.

Practical:
• Problem solving and Practical exercises related to axial loading, bending torsion and deflection of beams. Buckling, curved bars, strain gauges and fatigue loading. Special numerical problems and assignments.

Books Recommended:
Course Title: Farm Structures & Materials

Objectives:
- Enabling the students understand fundamentals of farm building designs and characteristics of materials used in the buildings

Contents:

Heat flow through Walls Insulation:

Rate of heat transmission through building materials, conductance, combined conductance coefficient, Equation for heat flow through non-homogenous walls, combined ceiling and roof coefficient.

Ventilation:

Air flow and quantity of moisture, Air flow required in heat transfer, Estimating Air flow required to prevent condensation, Air flow required to maintain prescribed chemical composition, Heat balance equation, Exposure ratio, Ventilating systems, Ventilation by Wind forces, Stack ventilation Systems, Construction practices, Forced draft systems.

Dairy Building:

Functional planning, Environment, Sanitation, Space requirements for animals and traffic, arrangement of space, Other considerations, Milking Parlors, Pen vs Stall Barns, Storage or feed, Milk and manure etc, Insulation and ventilation.

Poultry Housing:

Functional planning, Production practices, Environment, Space requirements, Arrangement or space, Insulation and ventilation, other considerations.

Storage of Fruits and Vegetable Crops:

Condition for storage, Refrigerated vs Common Storage, Economic aspects of storage, Characteristics of Common storage, Refrigerated storage, Refrigerating Load, Modified Atmosphere Storage, Types of Evaporators, Coil Temperature vs Relative Humidity and Equipment capacity, Air movement, Storage management.

Storage of Grains:

Destructive agents, Respiration of grains, Indices of quality, Moisture and Temperature changes in stored grains, Moisture properties of grains, Functional requirements, Conditioning moist grains, Storage structure, Equipment for grain handling and processing.
Recommended Books:

SEMESTER – 5

Engineering Elective I

Course Title: Communication & Presentation Skills

Credit Hours: 03

Objectives:
To enable the students to meet their real life communication needs

Contents:
The nature of communication & communication in an organization ,Power Point Presentations
Oral presentations, Persuasive presentations, Resumes and Covering letters, Interview taking, Meetings, Negotiation Skills, Team Communication, Debate, Persuasive Presentations on Research Report, Listening (audio aids TOEFL & IELTS Practice Tests),Business letters, memos and minutes, Writing and Presenting Proposals, Class Presentations, Class Presentations

Assignments to be given during the course
Letter writing , Resume and Covering Letter, Proposal, Team Writing, Sales brochure, Collecting ads

Books Recommended:
2. Hargie, O. (ed.) Handbook of Communications Skills
Course Title: Statistics & Probability 3(2-1)

Objectives:
Learning basic concepts and applications of probability & statistics in the agricultural engineering

Contents:

Statistics

Probability
Sets, Application of Venn Diagrams, Introducing probability, Mutually exclusive events, The addition law of probability, Complementary events, Concepts from communication theory, Problems related to engineering, Conditional probability, The multiplication law, Independent events, Baye’s formula, Permutations and combinations, Multiplication principle, Problems related to engineering, science and management, Applications of counting, Bernoulli trials, Binomial probability, Markov chains, Probability distribution, Expected value, Decision making, Problems related to engineering and management.

Practicals:
1. Simple, Multiple and Component bar diagram.
2. Histogram, Frequency polygon, Frequency curve, c.f. curve, cumulative percentage curve and locate Quantiles.
3. Problem assignments relating probability
4. Fitting a Binomial distribution.
5. Fitting a Poisson distribution.
6. Fitting a Normal distribution.
7. Sampling distribution of difference between two means.
8. Application/use of t-test for Null hypothesis
9. Test of significance of association of attributes by x^2-test (chi-square test).
11. Calculating a simple, partial and a multiple correlation and their tests of significance.
12. Fitting a simple linear regression equation and its test of significance by Analysis of Variance (F-test) and t-test.
Recommended Books:

Course Title: Irrigation Engineering 3(2-1)

Objectives:

• To educate students about importance, development and management issues of irrigation network of Pakistan
• Application of various crop irrigation techniques, design of irrigation channels using different approaches

Contents:

Introduction
Definition, necessity of irrigation, water resource and irrigation system of Pakistan, Indus Basin Treaty, water budget of Pakistan

Water Requirement of Crops
Functions of irrigation, preparation land for irrigation, crop period, base period, duty and delta, relationship between duty and delta, factors affecting duty, depth and frequencies of irrigation, Kharif-Rabi ratio, optimization of irrigation water, irrigation efficiency, uniformity coefficient, consumptive use of water, effective rainfall, net irrigation requirements, gross irrigation requirement, estimation of consumption use, Blaney Criddle, Hargreaves Methods, assessment of irrigation water charges

Methods of Irrigation
Classification of irrigation methods, factors affecting the choice of irrigation methods, surface methods, sub-surface irrigation methods

Hydraulic Structures
Introduction: Dams, weirs, and barrages. Classification of dams, Gravity dams, Forces acting on a gravity dam, Modes of failure, Principal and shear stresses, Stability analysis, Elementary profile of a gravity dam, Practical profile of a gravity dam, Limiting height of a gravity dam, Profile of high masonry gravity dam.

Water conveyance structures
Introduction: Canals, distributaries, minors, and water courses. Basic definitions, alignment of canal, water distribution system, required canal capacity, seepage losses, empirical formula for channel Losses, channel section for minimum seepage losses.
Design of irrigation channels

Design of stable channel, regime channels, Kennedy’s theory, Lacey’s theory, estimation of transported sediment, bed load equations, design procedure for unlined non-erodible irrigation channel, maintenance of irrigation channels

Practicals:
- Study of characteristics of various irrigation structures in the near by area.
- Design and layout of a canal for a given command.
- A field visit to canal irrigation system and structures.
- Design of outlets.
- Computer aided design of a watercourse for a command area.
- Sampling and measurement of sediments in canal water.

Recommended Books:

1. Irrigation Engineering & Hydraulic Structures by Santosh Kumar, Garg, 10th revised Edition, 1993
2. Irrigation & Water Power Engineering by Dr. B.C. Punmia, Dr. Pandè B.B. Lal
Course Title: Fundamentals of Environmental Engineering 3(2-1)

Objectives:
- Teaching various aspects of environmental science and engineering.
- To familiarize students with the basic principles of environmental engineering.

Contents:
Basic definitions, Importance of environmental control in agriculture, Pollution and their classification, Environmental monitoring and control.

Water Pollution:
Irrigation water quality, criteria and standard. Sources and types of pollution, agricultural practices and water pollution, solute transport phenomenon, judicious use of water to avoid leaching, land and water management techniques for controlling water pollution, subsoil contamination

Air Pollution:
Types of air pollutants, sources of air pollution, global warming, ozone depletion, hazardous substances, World's carbon pollution. Horizontal and vertical dispersion of pollutants, cleaning the atmosphere, measurements of particulates, gases and their control.

Noise Pollution:
Sound pressure level, frequency and propagation, Acoustic environment and health effects of noise, measuring noise, noise control.

Practicals:

1. Measurements of pH, colour, odour, BOD, COD, solids, nitrate of water and waste water etc.
2. Design of Green House and Plant Environment Control System.
3. Measurement of dust and fume in the air.
5. Case studies exercises and assignments.
6. Total coliform test in drinking water by multiple fermentation tube method.

Recommended Books:

Course Title: Instrumentation and Measurements 3(2-1)

Objectives:

Students’ preparation for electrical measurements

Content:

Basic terminology and concepts related to instruments Instrument behaviour application of instrumentation, functional elements of instruments, basic terms related to instrumentation, such as threshold, resolution, accuracy, precision, sensitivity, response and error of instrument, uncertainty analysis, least square techniques, static and dynamic characteristics of instrumentation, signal conditioning and recording devices.

Principles and Theory of Electrical Instruments: Potentiometer, wheat stone bridge. Strain analysis; strain measurement; strain gauges, types and their applications.

Practical

• Measurement of Displacement by LVDT and Potentiometer.
• Measurement of wind velocity.
• Measurement of Force by Strain Gauges.
• Calibration of pressure gauges with dead weight tester
• Measurement of Temperature by thermocouples.
• Computer inter-facing for the depth and draft controls of tractors.
• Visit to Mechatronics labs of different institutions.
• Study of depth sensors in Agricultural Machinery

Books Recommended:

SEMESTER – 6

Engineering Elective II Credit Hours: 03

Course Title: Professional Ethics 2(2-0)

Objectives

The objective of the course is to improve the ethical standards of students in engineering.

1. ENGINEERING ETHICS

2. ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering as experimentation – Engineers as responsible experimenters – Codes of Ethics – A Balanced Outlook on Law – The Challenger Case Study.

3. ENGINEER’S RESPONSIBILITY FOR SAFETY

4. RESPONSIBILITIES AND RIGHTS

5. GLOBAL ISSUES

Recommended Books:
2. Charles D Fledderman, Engineering Ethics, Prentice Hall, New Mexico, 1999
Course Title: Drainage Engineering 3(2-1)

Objectives:
Providing knowledge and skills required for drainage systems, types, requirements, and design, operation & maintenance of drainage systems.

Contents:

Introduction:
Definition of agricultural drainage, drainage system terms, scope and benefits. Elements of drainage design, types of drainage problems, differences in drainage in humid and arid areas, crop requirements. Surface and Subsurface drainage principles, theories of open drain/ditch and subsurface drainage systems, design criteria.

Drainage Investigations

Drainage Requirements
Plant processes. Raw materials, Plant structure, Factors controlling production. The soil environment and aeration requirement. Diagnosis and improvement of salt affected soils, Plant response to salinity, Soil response to excess water and salinity, Situation in which drainage problems exist.

Drainage System
Investigation procedure, Moisture holding capacity in the root zone, annual irrigation schedule, deep percolation from irrigation, sources causing high water table conditions, determination of barrier zone and drain locations.

Surface Drainage
Surface drainage system, type and functions of surface drainage ditches, land forming, joint surface and subsurface drainage system.

Sub-Surface Drainage
Planning subsurface drainage system, Use of vertical drainage system. Design, installation, and construction of subsurface drains, Maintenance of buried drains. Open ditches for drainage. Interceptor and mole drains; Design and construction.

Operation and Maintenance of Drainage System
Buried Pipe drainage system, open drainage system, drainage water disposal ponds, drainage observation well, policy and basic requirements, weed control and embankment stability.

Practicals:
- Verification of Darcy’s Law by laboratory methods
- Measurement of seepage losses.
- Determination of water table,
- Saturated hydraulic conductivity by piezometers,
- Auger hole, planning of a subsurface drainage system and outlet with design of a sump;
- Visit of Drainage Projects.
- Computation of leaching requirement and drainage coefficient of a drainage basin.
- Total coliform test in drinking water by multiple fermentation tube method.

Recommended Books:

Course Title: GIS & Remote Sensing 3(2-1)

Objective:
Understanding basic principles of Global Information System (GIS) & Remote Sensing (RS), and their applications in the field of agricultural engineering

Contents:

Displaying Data
Creating map, Adding tabular data to a map, Symbolizing data. Labeling, Charting and Map projection. Layout

Querying Data
Getting attributes of features, Attribute of particular feature, Feature near other, Fall inside polygon, Intersect other feature. Aggregation of data.

Data Creation
Creating and editing spatial data. Registration and digitization. Working with images and aerial photographs. Working with CAD in GIS environment.

Analyzing Data for Specific Purposes
Creating suitability map for various purposes. Soil, rainfall and water pollution map for various parameters. Use of GRID data for groundwater sources.

Creation of Surface Model

Practicals:
Land use/Land cover, water quality monitoring, land degradation, monitoring of environmental pollution, crop production, water resources, weather analysis and forecasting.

Recommended Books:
1. Arc View 3.x, Arc GIS 9.0 and Map Info
2. ERDAS Imagine 8.7 and Differential GPS set.

Course Title: Soil & Water Conservation Engineering 3(2-1)

Objective:

Understanding the process of soil degradation and its protection effectively, and soil moisture in agriculture productivity.

Contents:

Water Erosion

Wind Erosion

Rainfall and Runoff

Cropping System and Agronomic Measures For Erosion Control

Watershed management, Plant cover, Crop rotation, Strip-cropping, Conservation tillage, Contour cultivation, Land capability classification.

Terracing

Vegetated Outlets

Use of vegetated outlets and water courses in the control of erosion. Design of vegetated outlets. Water-way construction and maintenance.

Conservation Structures

Drops Spillways, Chutes and Pipes Spillways; their requirements, components and limitations.
Water Conservation

Practicals:
- Measurements of soil loss from splash erosion by rainfall simulator.
- Measurements of soil loss using universal soil loss equation.
- Demonstration of moisture conservation techniques.
- Field visit to areas with water and wind erosion prevailing.

Books Recommended:
Course Title: Farm Machinery & Earth Moving Equipments 4(3-1)

Objective:
Teaching farm machines required for crop husbandry in addition to land leveling equipment.

Content:

Field Capacities and Cost Analysis

Implements Types, Factors affecting field capacity, Cost analysis

Hydraulics Controls and Power Take Off (PTO) Drives

Tillage Force Analysis and Hitching
Forces acting upon a tillage implement, Mechanics of tillage, Tillage tool design factors, Measuring & evaluating performance, Measuring draft of implements, Vertical and horizontal hitching of trailed implement, Hitches for mounted implements, Depth and draft control on hitches.
Tillage Implements

(a). Primary tillage implements
Function & Types of Mold board plows, Components of a mold board plow, Reaction of soils to mold boards, Pulverizing action, Turning & inversion, Scouring, Forces acting upon a plow bottom, Effects of soil types, depth of plowing shape & design, attachments & rear furrow wheel and speed on draft & performance. Functions, components & types of Disk plows, Rotary plows, Chisel & subsurface plows.

(b). Secondary tillage implements
Functions, components & types of Harrows, Cultivators. Land rollers and Pulverizers, Subsurface tillage tools & field cultivators.

Equipment for Sowing and Planting
Functions, components & types of planting equipments, Seed metering devices, Maize drills, Calibration of seed drill. Broadcasting machines, Fertilizer and insecticide placement. Transplanting machines, Spraying systems.

Grain and Seed Harvesting
Harvesting and threshing methods, Types and development of Combines, functional elements of a combine, Flow path of material, Types and sources of seed loss, Types of threshing cylinders, Threshing effectiveness, Cylinder adjustment, Testing of Combines and its power requirements, Windrowing.
Earth Moving Equipments
Principles and working of Bulldozers, Soil scrapers and ditchers, Crawler, Parts of Crawler, Comparison of wheel type and Crawler tractors.

Practicals:

- Identification of Primary Tillage Implements.
- Identification of Secondary Tillage Implements.
- Determination of Field Capacity of Agricultural Field Implements under actual field condition.
- Determination of Field Efficiency of Agricultural Field Implements.
- Determination of tractor Wheel Slip.
- Calibration of grain drills in Laboratory.
- Calibration of grain drills in Field.
- Study and operation of Tractor Hydraulic System.
- Mini Project.

Recommended Books:

Course Title: Agricultural Processing Engineering 3(2-1)

Objective:
Developing an understanding of equipment and unit processes in agro-industries.

Contents:

Introduction: industrial processes, value addition, structure and composition of food grains and fruits, engineering properties of agricultural materials - physical, mechanical and thermal properties.

Pumps: types of pumps used in the industries, pump selection, pump laws and performance, viscosity effects.

Fans: Classification as to type and design of fans, fan theory, fan performance, factors affecting fan selection, general performance and laws, fans in series and parallel, compression effect.

Material handling and transportation equipment: Belt conveyors, chain conveyors, bucket elevators, pneumatic conveyors, gravity conveyors, augers, and trailer/ trucks

Cleaning, Sorting and grading: Grade factors, washing types and methods of washing, sorting fruits and vegetables, types of sorters, cleaning and sorting, grading, nuts and seeds, types of grain cleaners/sorters, aerodynamics of small practical, types of separators, machine vision and its applications in grading.

Size reduction: Types of size reduction mills; fineness modulus, value of ground feed, size relationships, energy requirements, size reduction procedures, reducing devices, performance & characteristics of size reduction devices, mixing and types of mixers.

Cold Storages: Need of cold storages, types of cold storages and their design, temperature and humidity controls, heat load, automation of cold storages, air conditioning, aeration.

Drying: Drying and dehydration, moisture content determinations; primary methods, equilibrium moisture content, drying processes, constant rate period, falling rate period, falling rate drying mechanism, dynamics of equilibrium moisture content, effect of temperature upon the rate of drying, effect of air rate upon the rate of drying, heat and mass balance limitation of the drying equipments, calculations, types of driers, psychometric chart.

Packaging Material: Packaging materials and techniques, material properties, packing geometries

Practical
- Determination of internal friction and angle of repose
- Measurement of bulk density of grains
- Measurement of grain moisture content by oven method and moisture meter.
- Selection of fans for aeration of bin
- Calculation of Fineness modulus of wheat flour
- Demonstration of sieves used for cleaning/grading
- Carrying out screen analysis of a milling/grinding equipment
- Study of Psychrometric chart to calculate heat transfer during aeration/drying.
- Study of dehydration characteristics of fruits/vegetable by moisture content vs time curve and drying rate vs moisture content curve.
- Visit to cold storage facilities.
- Study tour to visit agricultural processing units and plants.

Books Recommended:

SEMESTER – 7

Engineering Elective III Credit Hours: 03

Course Title: Machine Design 3(3-0)

Objectives:
Acquire skills relating design of machine components

Contents:

Introduction
Meaning of Mechanical Engineering Design, Phases of design, Design considerations, Safety and product reliability, Codes and standards, evaluation and presentation

Design of Simple Machine Components
Design of shafts, torsion of circular shafts, horsepower transmitted by the shafts, design of clutches, bearings, gears, flange couplings, pulleys and connecting rod

Design of Fasteners and Connections
Different types of fasteners. Thread standards and definitions, Mechanics of power screws. Bolts strength and selection of units, Bolt preload, torque requirement, Bolted, riveted and welded joints loaded in shear, Keys pins, and retainers

Elements of Rotary Power Transmission
Belts, Stresses in belts, Chain and sprocket drives, Gears drives, Flexible shafts, Bearings

Recommended Books:

Course Title: Industrial Chemistry Credit Hours: 3(2-1)

Impurities in natural water, hardwater, water softening, boiler scales and deposits, industrial, irrigation and municipal water, metallic corrosion and its inhibition, paints and varnishes, fats and oils, extraction, refining and hydrogenation of oils, sugar industry and its by-products, nitrogenous, phosphatic and potassic fertilizers. Aerobic & non aerobic fermentation.

Practical’s

☐ Determination of carbonates and bicarbonates in industrial water
☐ Determination of chlorides and sulphates in industrial water
☐ Determination of pH and TSS in water
☐ Estimation of nitrogen, phosphorus and potassium in fertilizers
☐ Analysis of an oil for acid, saponification and iodine value.

Books Recommended
Course Title: Project & Report -I Credit Hours: 03

Introduction to technical report writing, important components of technical writing, selection/preparation of research topic, objectives, review of literature, methodology, data processing, results, conclusions, summery, abstract, presentation of (data collected in the field/laboratory) results in the form of graphs, tables, figures, and photographs, references and appendices, report writing, presentation methods and skills.

Books Recommended

SEMESTER – 8

Engineering Elective IV Credit Hours: 03

Course Title: Engineering Economics & Management credit Hours: 03

Management Fundamentals

Project Scheduling and Control

Marketing Management

Selling versus Marketing, Role of a company: Leader, Follower, Challenger, Basics of Marketing, Place, Price and Promotion. Role of a company in Market Place.

ISO 9000 and Quality Management

Economics and Accounting

Budgeting Methods, Cost Estimation, Assets, Liabilities, Capital and Revenue Expenditure, Depreciation, Depletion, Amortization, Owner’s Equity Debentures, Loan Financing, Accounting, Qaurds, Ledgers, Profit and loss statement.

RECOMMENDED BOOKS
Course Title: Numerical Analysis 3(2-1)

Objective:
To introduce various techniques for solving Linear, non linear and difference equations using various numerical methods.

Contents:

Finite difference, Forward, backward and central difference and its operators form, Interpolation and extrapolation; Linear and higher order interpolating polynomials, Newton’s Gregory forward & backward difference interpolation formulas and its utilization as extrapolation, Lagrange interpolation and extrapolation, Numerical differentiation based on differences, Numerical integration; Trapezoidal and Simpson’ approximations, Trapezoidal and Simpson’s extrapolations by Romberg integration process, Numerical Solution of non-linear equations; Bracketing and iteration methods and its applications as multiple root methods, Direct solution of the system of linear equations; Gauss-elimination, Direct and indirect factorization, symmetric factorization, tridiagonal factorization, Iterative methods like Jacob’s iteration and Gauss-Seidel iteration, Numerical solution of initial value problems; Single-Step methods like Euler’s method, Euler’s modified method, Runge-Kutta method and its comparison with Taylor’s series expansion, Multi-steps methods like Adams Bashforth and Moulton two and three step methods, Higher order differential equations, system of differential equations, Numerical solution of linear and nonlinear boundary value problems.

Recommended Books:

Course Title: Pumps and Tube wells Credit Hours: 3(2-1)

Introduction: Functions of pumps and tubewells, importance of pumps and tubewells in irrigation and drainage, groundwater exploitation by tubewells. Description of Tubewells: Components of a tubewell, factors affecting selection of site, well drilling methods; cable tool method, direct rotary method, inverse rotary method and their respective merits and demerits, well design; depth of well, well casing, well screen, filter pack. Well development methods, typical drilling problems, well losses, well efficiency, well logs, gravel packing and well maintenance. Skimming wells.

Pumps: Pump components, pump classification; centrifugal, jet, positive displacement, turbine pumps, submersible pumps, propeller and mixed flow pumps and air lift pumps- Types of impellers. Terminology in pumping systems- specific speed, priming, pumping energy, total dynamic head, pump problems and their remedies. Power requirement of pump.

Characteristic pump: TDH-Q, BP-Q, NPSH-Q and Efficiency-Q curves. Cavitation, Net positive suction head (NPSH), affinity laws, pump testing, maintenance of pumps.

Irrigation System Head and Power Requirements: Suction lift, well draw down, friction head loss, operating head-seasonal-variation in system head curve, pump selection, prime mover electric, diesel and their selection, feasibility of prime mover selection.

Practical
1. Study of components and operational characteristics of various pumps.
2. Use of characteristic curves of different pumps.
3. Design of a pumping well using field data.
4. Design of gravel packing for specific conditions.
5. Determination of pump efficiency
6. Study of various components of tubewell
7. Discharge measurement of a tubewell

Books Recommended
Course Title: Project Report–II Credit Hour : 3(0-3)

Execution of the selected project and preparation of report.
ENGINEERING ELECTIVE COURSES

1. ELECTIVE COURSES: IRRIGATION

Hydraulic Machinery Credit hours 3(2-1)

Introduction: Definition, types and uses of hydraulic machinery.
Steady incompressible flow in pressure conduits: Laminar and turbulent flow in circular pipes, major and minor energy losses in pipes, branching pipes, pipes in series, pipes in parallel and pipe network analysis.
Similitude and dimensional analysis: Geometric, kinematic, and dynamic similarity, dimensionless numbers like Reynolds number, Froude number etc., and their application, application of similitude and dimensional analysis in hydraulic model studies.
Similarity laws and factors for turbo-machines: Efficiency, similarities, restriction on use of similarity laws, peripheral-velocity factor, specific speed.
Hydraulic turbines: Definition, types of turbines, suitability of turbines, components of turbines, inlet and outlet velocity diagrams, guide blade angle, inlet and outlet vane angles WHP and BHP of turbine, hydraulic, mechanical and overall efficiency of turbines, factors influencing the performance of turbines.

Practical
1. Impact of jet on stationary flat and curved vanes.
2. Measurement of various losses through pipes and pipe fittings.
3. Verification of Reynolds number.
4. Components and operational characteristics of various pumps.

Books Recommended
4. Khana Publishers, New Delhi, India.
Soil Dynamics Credit Hours 3(2-1)

Retaining Walls: Definition, purpose and classification, forces acting on earth retaining structures. Lateral earth pressure, Coulomb's earth pressure theory, assumptions, deficiencies in Coulomb's earth pressure theory. Methods of force projection, active earth pressure, derivation of active earth pressure, passive earth pressure, derivation of passive earth pressure, stress distribution diagram. Surcharge, various kinds of surcharge.

Earth Pressure: Kinds of lateral earth pressure, Rankine earth pressure theory, stability of slopes, stability analysis infinite and finite slope.

Practical

1. Determination of consolidation under given load.
2. Determination of shear strength of soil.
3. Coulomb’s earth pressure theory.

Books Recommended

Water Management Engineering Credit Hours: 3(2-1)

Water Course Design and Improvement

Precision Land Leveling

Precision land leveling, Objective, Advantages and disadvantages of land leveling, Farm assessment and layout, Traditional survey layout procedure. Adjustment of borrow and fill, procedure for sloping fields, Land leveling maintenance.

Water Storage Tanks

Sizing a water storage tanks, Considerations in sizing water storage tanks, General criteria, Design of storage tanks, construction of water storage tank, Preparatory works, Materials and procedures, Concrete base, Brick or stone walls, Concrete walls, Back filling, Stone pitching, Quantities.

Water Harvesting

Introduction, Goals and objectives, Site selection, Area appraisals, Topographical surveys, Land use plane and work plane, Land development and conservation structures, Leveling, terracing, improved bunds, improved tillage, field spillways, water ways, diversion ditches, Storage structures, Water balance, Site investigation, Water retention dams/ponds.

Agronomy Practices for Water Management

Conjunctive Use of Water

Conjunctive use of saline groundwater. Effects of sediment and salinity on conjunctive use of water.

RECOMMENDED BOOKS

1. On Farm Water Management Field Manuals, (Revised 1996-97)
c. iii) Vol.VI Irrigation Agronomy.

Course Title: Ground Water Hydrology **Credit Hours:** 3(3-0)

Introduction

Basic concepts of Ground Water and Soil water, Types of subsurface water, Water Potential, Aquifer types, Soil water movement and Ground water movement, Forms and origins of Ground water, Aquifer functions, Porosity, Storage coefficient, Hydraulic conductivity, transmissivity.

Ground Water Movement

Darcy’s Law and its applications, Observation wells, Peizometers, Flow nets, Streamlines, Equipotential lines, Steady and non-steady flow.

Contamination in Ground Water (The teacher will elaborate this topic to the students)

Well Hydraulics

Steady flow in confined and un-confined aquifers, Steady flow in confined with uniform recharge, Unsteady flow in un-confined aquifer, Wells near aquifer boundaries, Multiple well system, Specific capacity, Well losses, Well efficiency and aquifer testing.

Construction of Tube Wells

Well drilling methods, selecting and setting of screens, design and placing of gravel pack, methods of well development, Tube well performance tests.

RECOMMENDED BOOKS

Farm Irrigation Systems and Systems Design Fundamentals

Functions of farm irrigation systems, Types of farm irrigation systems such as diversion methods, conveyance methods, and application methods, Design of farm irrigation systems, Data for design, Water source evaluation and determination of daily design requirements.

Crop Water Requirements

Plant soil relationship, Evapotranspiration, Determination of evapotranspiration and irrigation scheduling.

Surface Irrigation

Different methods of surface irrigation, furrow irrigation, border irrigation and basin irrigation, Surface irrigation process, Effectiveness of surface irrigation i.e. uniformity, application efficiency etc. Design of surface irrigation system, Infiltration data for surface irrigation, Design of furrow, border and basin irrigation systems.

Sprinkle Irrigation System

Advantages and disadvantages of the system, Types of sprinkle system, Components of sprinkle system, Design of set-move including its layout, number of lateral operated per irrigation set and sprinkle selection.

Trickle Irrigation

Advantages and disadvantages of trickle irrigation, Problems associated with trickle irrigation, Trickle irrigation methods, Trickle irrigation system components, Trickle irrigation laterals, Mainlines and manifolds, Control heads and control of trickle irrigation clogging.
Practical

1. Design and layout of surface irrigation methods for a given field.
2. Field evaluation of surface irrigation system.
3. Design and evaluation of sprinkler irrigation system for a given field.
4. Design and evaluation of drip irrigation system
5. Evaluation of surface irrigation system using appropriate computer
6. Software (BASCAD etc.)
7. Preparing irrigation schedule of cropped field.

RECOMMENDED BOOKS

REFERENCE BOOKS

3. Crop Water requirement by F.A.O

Vegetated Waterways: Use, design and maintenance of vegetated waterways. Conservation Structures: Functional requirements of structures, limitations and design of drop spillways, culverts and pipe spillways. Watershed: Definition, watershed characteristics, importance of watershed management in water resources. Embankments and Farm Ponds: Types, foundation requirements and design of earth embankments, mechanical spillways, flood or emergency spillways, types, requirements, site selection and design of farm ponds.

Practical
Measurements of soil loss from splash erosion by rainfall simulator.
Measurements of soil loss using universal soil loss equation.
Demonstration of moisture conservation techniques.
Field visit to areas with water and wind erosion prevailing.

Books Recommended

Surface Water Hydrology Credit hours 03

Hydrologic processes: Introduction, Hydrologic cycle and its components, importance of hydrology, climatic factors, estimation of precipitable water, snowcover and snow fall, stream flow, water stage, discharge, interpretation of stream flow data evaporation and transpiration, Evapotranspiration and its estimate using different methods.

Hydrologic Analysis: Hydrograph and its characteristics, Run off and its components, recessions, hydrograph separation, rainfall-runoff relations, phenomenon of runoff estimating the volume of storm runoff, estimating snow melt runoff, seasonal and annual runoff relations, hydrograph of runoff unit hydrograph its derivation and application, overland flow.

Hydrologic Models: definition, classification of models, development, calibration, verification and application of models.

Practical

1. Demonstration of weather recording instruments and practice in taking actual data from weather stations including a visit to weather station.
2. Measuring runoff in the field by different techniques.
3. Development of unit hydrograph and its use.
4. Frequency analysis of rainfall data.
5. Measuring infiltration rate in the field.

Books Recommended

PROJECT PLANNING AND MANAGEMENT

Project Planning, Scheduling and Controlling by Deterministic Models: project planning activities, Rectangular bar chart, CPM, developing a critical path schedule, determining the minimum total cost of a project, Manual versus computer analysis of critical path methods, preparing a execution schedule, scheduling resources, delivering Materials, scheduling laborers, Financing the project, Job layout, Project control during construction, keeping equipment records, Project supervision, construction cost control, cost control records. Project Planning, Scheduling and Controlling by Probabilistic Models: PERT project Evaluation & Review Technique, Statistical tools as mean variance. Standard Deviation. Probability distribution, beta courses, center limit, Use of computer software in project management and planning. claims and arbitration: claims, escalation, indexation, arbitration and litigation. Factors Affecting the Selection of Equipment and Tools: standard types of equipment, special equipment, the cost of owning and operating equipment, depreciation cost, straight line depreciation, decline balance method, sum of the year, digit method, Investment costs, operating costs, economical life of construction equipment, cost of depreciation and replacement, Maintenance and repair costs, down time costs, economical cost of equipment, sources of construction equipment. labour problems, labour organization, prevention and settlement of disputes.

Practical

Preparing a PC-I project proposal for a small irrigation project

Books Recommended
IRRIGATION WATER MANAGEMENT TECHNIQUES

Soil-water plant Relationship: Soil moisture and its types, soil moisture characteristics, field capacity, wilting point, total available water, management allowed deficit, infiltration rate, hydraulic conductivity.

Practical

Determination of field capacity and wilting points of a soil sample.
Land leveling of a given field and cost estimate.
Field visits of earthen and lined water courses.
Flow measurement in a watercourse and interpretation of data.

Books Recommended
3. Jensen, M.E., 1981, Design and Operation of Farm Irrigation System. ASAE, Monograph, USA
Drainage Problems: Drainage systems in Pakistan and their extent. Current drainage practices; benefits of drainage; occurrence of water in the soil, source of excess water, pressures in the soil water, water table, ground water flow (Darcy’s Law), saturated flow theory, flow through stratified soils, hydraulic conductivity and its measurement, drainable pore volume, salinity and water movement; leaching requirements; drainage requirements. Salt affected soils, their classification. Diagnoses and improvement of soil affected soils. Planning and design of drainage system. Field investigation, stages of project planning, design of pipe drainage system.

Surface Drainage: Design of open ditches; methods of construction; different ditch systems; maintenance of open drains. Interceptor drains and their design.

Sub-Surface drainage: Tile drains, mole drains; depth and spacing. Design criteria (steady and non steady state); drainage coefficient; length and size of the tile drains. Outlets for tile drains. Size and length of perforated pipes (pvc) for subsurface drains.

Vertical Drainage: Design and material. sump and pumps, experience of vertical drainage in Pakistan.

Practical

Verification of Darcy's Law by laboratory methods, Measurement of seepage losses. Determination of water table, Saturated hydraulic conductivity by piezometers, Auger hole, planning of a subsurface drainage system and outlet with design of a sump; Visit of Drainage Projects.

Computation of leaching requirement and drainage coefficient of a drainage basin.

Books Recommended
LAND RECLAMATION 3(2-1)

Practical

Measurement of infiltration rate of saline, sodic and waterlogged soils, movement of solutes, preparation of soil paste and soil saturation extract, chemical analysis for pH, EC, SAR, ESP, and cations and anions, quality of irrigation water, water table depth measurements.

Books Recommended
QUANTITY SURVEY AND COST ESTIMATION 3(3-0)

Scope: Scope of civil engineering works; General practice in government departments for schedule of rates and specifications; Rate analysis; Specifications for various items of construction.

Bill of Quantities (B.O.Q) & Measurement Book (M.B): Types and methods of estimates, Working out quantities, rates and cost analysis of construction materials; Valuation, depreciation and sinking fund.

Contents and preparation of bills of quantities for different projects like irrigation, roads, sanitary, building etc. and maintaining of Measurement Books. Measurement, specification and costing of excavation and back filling, mass concrete retaining walls, beams, concrete piles, steel or wooden truss or steel framed gantry, estate road, sewer and water main pipe works, Priced bill of quantity.

Tendering: Preparation of civil engineering contracts and tender documents. Introduction to claims and conflicts resolution e.g. escalation, indexation, arbitration and litigation.

Evaluation of proposals and contracts.

Books Recommended
1. E.W. Steel and Terence J. Mc GHEE, Estimating & Costing,
2. ENGINEERING ELECTIVES: FARM MACHINERY

Design of Agricultural Machinery Credit Hours: 3(2-1)

Philosophy of Design
Formulating of procedure, importance of machine design in Agricultural Machinery, Reliability, Engineering Standards, User economics.

Tolerance Design and Statistics
Tolerance and allowances, application of statistics to manufacturing.

Stresses
Stress failure theory, Designing for deflection, Strain determinations, Stresses caused by impact.

Power Transmissions
V-Belt forces, kinematics and design procedure, Chain drive, Forces, selection and design procedure. Universal Joints, description and functioning in Agricultural Machinery.

Linkages in Farm Machinery
Velocity and acceleration determination, Four bar mechanism, Machinery mechanism, Forces on plows and discs.

Hydraulic Power System
Hydrostatic drives and hydraulic pumps, Pump performance and rating, Hydraulic motors performance and rating, Control valves, Hoses and fitting, Cylinders.

Design of Surfaces of Plow Bottoms
Design of moldboard plow and disk plow.

Stability of Plows
Force equilibrium and stability, Supporting elements, Plow stability in horizontal plane, Procedure for measuring the quality and testing plows.
Practical
1. Chain and belt drives design and installation.
2. Determine the angular relation between the input and output of universal joints.
3. Analysis of thresher.
4. Calculate the forces in three-point hitch of tractor.
5. Visit to Farm Machinery Institute for Implement evaluation.
6. Assembling and disassembly of seed planter, sprayer and engine.
7. Analysis and construction of agricultural machines.
8. Design methods of a mould board plow.

RECOMMENDED BOOKS
Boiler Engineering and Power Plants Credit Hours 3(2-1)

Boiler Engineering: Introduction, types, construction, mounting, accessories steam cycle, steam nozzles, supersaturated expansion in nozzles, heat drop in saturated and supersaturated expansion, steam injector, steam turbine, work done, velocity diagram, work done in blading, velocity compounding, pressure compounding, impulse turbine, heat account for boiler and turbine, amount of fuel burnt, acceptance tests, analysis and calorific value of fuel, analysis of flue gases, amount of steam produced, pressure and quality of steam, design of boiler and pressure control system devices. Properties of steam, enthalpy of water, dryness fraction, enthalpy of wet steam, use of steam tables, super heated steam, internal energy of steam.

Power Plants:Steam Plants: Introduction, general layout of modern steam plants, steam generators, engines and auxiliary components, back pressure and pass out turbines, deviation of actual cycle from ideal, turbine pump and condenser.

Gas Turbine and Power Plants: Introduction, the gas turbine cycle, modification in basic cycle, isentropic efficiency of compressors and turbines, intercooling and reheating, explosion type gas turbine with solar heating, development and improvement in gas turbine. Jet propulsion plant, comparison of steam and gas power plants.

Practical

1. Demonstration and inspection of different types of boilers.
2. Determination of calorific value of fuel
3. Analysis of flue gases using gas analyzer
4. Quality analysis of steam
5. Measurement of impulse force on vane of turbine
6. Assessment of power generation at output shaft
7. Visit to different power plants
8. Visit to sugar and textile industries to study boilers and steam power.
9. Visit to nuclear and steam power plants.

Books Recommended

Energy Resources and Management Credit Hours 3(2-1)

Introduction: Overview of various types of energy sources (renewable and Non-renewable) and its use in the country. Energy management/audit with reference to: fertilizer (organic/inorganic), chemical controls, irrigation, mechanization, post harvest system and food consumption. Technological alternative for efficient energy management in agriculture.

Solar Energy: Solar system, solar radiation, basic earth-sun angles, time derived solar angles, estimation of solar radiation, radiation measurements, solar radiation collectors, various uses of solar energy in domestic/agriculture, solar energy conservation

Practicals

1. Estimation of energy requirements for major crops.
2. Performance/evaluation of biogas plants
3. Estimation of solar and wind energies
4. Study of different types of solar dryers
7. Measurement of energy contents in diesel, biomass, and vegetable oil with calorimeter.

Books Recommended

Farm Machinery Management Credit Hours 3(2-1)

Machine performance: Machines capacities; time efficiency; machine manoeuvrability; field patterns, factors effecting machine performance.

Power performance: Tractor power; draw bar power; PTO power, hydraulic power, power measurement; tractor tests, Nebraska Tractor Tests.

Ergonomics: Introduction, operator skill, operator aids for control, machine sensors, GPS role in machine control, operator safety and environment

Machinery Management: Machinery costs – ownership costs, operating costs, and timeliness costs; machinery selection and replacement.

Optimization: optimum use of machine, estimation of power for a machine, part load operation, break even point, linear programming.

Hay and Forage harvesting: Mechanics of cutting plants; mowers; mover conditioners, balers; impact cutting; curing and preservation of forage; wind rowing.

Grain harvesting: Introduction, methods and equipment, reaper and windrowing; types of threshers, threshing cylinders, threshing losses, combine harvesting: types of cutting heads and tracks for different crops(wheat, rice, maize, sunflower), functional processes – gathering, cutting, pickup, feeding, threshing, separation, cleaning; combine losses and adjustments, performance evaluations.

Special crop machines: Cotton harvester; maize harvester; sugarcane harvester; potato harvester.

Precision Farming: Introduction, precision farming methods, precision equipment- laser land levelling, sensors, variable rate application, role of GIS and GPS in precision farming

Practicals

1. Measurement of Drawbar and PTO power of a tractor.
2. Calculation of field capacity of selected farm machinery.
3. Demonstration of reaper and thresher.
4. Demonstration of combine harvester.
7. Thresher and Combine adjustments to solve grain breakage problem.
8. Study of cost analysis of combine harvesting.

Books Recommended

Post Harvest Engineering

Credit Hours 3(2-1)

Introduction: Importance of cereal grains and other food products, food preservation, the food cycle, important factors of food production.
Properties of Cereals: Cereal grains and their structure, physical properties, biochemical properties.
Factors Affecting Grain Stability: Physical factors, biological factors, chemical factors, thermal factors.
Post harvest Losses: Forms and measurement of post harvest losses, measures to control losses.
Pre-storage handling of Food Products: Physiological maturity, harvesting, threshing, collection, transportation, and receiving system.
Drying and Aeration: principle of drying, solar drying, artificial drying, types of dryers, components of dryers, factors affecting drying rate, natural aeration, artificial aeration, methods of aeration, air conditioning/refrigeration.
Storage: Basic requirements for a storage structure, classification of storage structure, types of Public storage structures, storage structure design, temporary and permanent storage facilities, Non-conventional storage facilities, considerations in selecting type of storage structure, problems in grain storage, stored grain pests, control methods.
Grades and Standards: Importance of grades and standards, food quality, establishing grades and standards, assessing the grade, grade factors and their importance, grading equipment, representative sampling, WTO and its regulation regarding quality control.

Practicals

1. Measurement of moisture content of grain, fibre, and other food products
2. Measurement of size, shape, density, specific gravity, porosity, angle of repose, coefficient of friction, hardness test.
3. Thermal properties of biological materials; specific heat, thermal conductivity.
4. Study of air conditioning and refrigeration plants.
5. Study of storage structures and their specifications.
6. Visits to public / private storage structures.

Books Recommended

Industrial Engineering and Management Credit hours 3(2-1)

Introduction: Industrialization and industrial policies of Pakistan; Classification of agro-based industries, management, operations research, system engineering, statistics, ergonomics, manufacturing engineering, ISO & WTO regulations

Production System Design: Mill and Plant Layout; Line Diagrams; Flow Diagrams, Work measurement, General Terminologies used in physical measurements.

Product System control: Inventory control, production control, production planning, quality control, statistical process control charts, sampling plan, total quality management,

Engineering Economy: Pricing, costing, interest calculation, present worth, future worth, annual rate of return, annual cost method, return on investment, payback method, cost control engineering.

Industrial Environmental Communication and Pollution: Industrial Environmental Education; Factors Affecting Environment of different industries; Environmental Planning, Monitoring and Control Strategies of Recycling Materials for Ecological balance. What is Pollution; Sources of Pollution, e.g. Natural Sources, Industrial Sources, Point Sources and Non-Point Sources. Industrial Revolution and its Impact on Soil, Water, Air and human health. Effect of Unplanned Technological growth on Environmental Pollution.

Practicals

1. Study of organizational structures of selected industries.
2. Study of plant/factory layout principles.
3. Estimation of air, water, and soil pollutants of selected industries.
4. Study of different types of cleaners and conveyors.
5. Evaluation of different storage techniques.
6. Visit to local vendor Industries.
7. Student projects

Books Recommended

REVERSE ENGINEERING IN AGRICULTURAL ENGINEERING 3(2-1)

Objective:
- Optimization of mechanical inputs
- Providing ingenious and indigenization solutions to problems
- Economization / cost reduction

Content:

Overview
Definition and scope

Steps Involved in Various Stages of Reverse Engineering:
Analysis of functionality of the design: a) List of functional attributes of the machine/part. b) Attributes to be added/Modified by re-engineering;
Exploding/Disassembling the Sub-assembly and Making the BOM (Bill of Materials);
Materials Scanning for each Component: Physical Properties, Hardness and Tensile testing, Chemical testing- Materials Spectrometry, Functional validation of materials selection and performance, Recommended Improvement and/or modification in Materials etc;

Metrological Probing in Reverse Engineering:
Scanning of the parts, 3-D drawings with various design softwares

Creating the Computer Aided Dimensional Parameter: Creating the Manufacturing processes by closely analyzing the manufacturing requirements of each part;

Practical:
1. Drafting the Modified Parts: Create 2D drafts or 3D models of the parts in the BOM. (Depending on the Criticality or the Manufacturability of the parts) in BOM. (use Solid-works).
2. Create the complete Drawing folder for the BOM
4. Create Request for quote (RFQ) package for local vendors
5. Test of Modified Functional Parameters.

Recommended Books:

4. Engineering Electives:

Environmental Engineering

Water Quality Management 3(2-1)

Introduction: Definition and concepts, irrigation and drainage water quality, water quality terminology, water quality objectives, quality criteria and standards for irrigation water carcinogenic/non carcinogenic substances, water quality status in Pakistan.

Water treatment: Water pollution and their sources, water treatment techniques i.e. coagulation, softening, mixing and flocculation, sedimentation, filtration etc.

Drainage Effluents and Management Techniques: Sources of drainage water, characteristics, quality of drainage water, alternates for disposal of drainage water drainage water reuse techniques, crop management, soil management techniques, chemical management techniques, drainage and leaching fractions, concepts of preferential flow.

Agricultural chemicals and Groundwater Contamination: Agricultural chemical, their uses, trends and properties concept of nitrate nitrogen and pesticides transport ;through the soils, behavior of agricultural chemicals in flooded/water logged soils, management practices to avoid groundwater contamination.

Practical

1. Analysis of drainage water for irrigation purposes.
2. Waste water analysis for BOP, COD and other chemicals.
3. Visit to waste water treatment plants, drainage system and drainage reuse sites
4. Use of computer software to assess non-point source pollution.

Books Recommended

3. Rosenberg, N.J. and Blad, B.L. Microclimate. 1983. the biological environment. 2nd edition, John Willey and Sons, N.Y.
Environmental Management System in Industry Credit Hours 3(3-0)

Books Recommended
3. ISO 14000 Standards Manual
4. Pak EPA Act, 1997
Solids Waste Management Credit Hours 3(3-0)

Farm Wastes: Sources and types, bio-chemical properties of Wastes.
Recycling and Management: Recycling of wastes; By products of cereals, legumes, oilseeds, fruits and vegetables. Crop, livestock and aquatic waste utilization in various industries, Fermentation of by-products and waste, Furnaces and boilers run on agricultural wastes and by-products, Generation of electricity using surplus biomass.
Identification of various agricultural wastes, study and operation of equipments used for size reduction, digesting and processing of wastes and by-products. Study and operation of equipment/machines used for utilizing various wastes, Incinerator. Study of techniques for bio-gas production utilizing plant and animal waste. Utilization of agricultural wastes for production of manure and animal feed.

Books Recommended

2. Scientific Publishing Co., USA.
WATER SUPPLY AND SEWERAGE

Introduction: overview of water supply and sanitation in Pakistan; Health Aspects of Water Supply and Sanitation; Water availability standards. Water Supply: sources of water, Choices of water sources (spring, wells etc) and their protection. Design and construction of Tubewells, Dug wells and handpumps.

Forecasting population, Consumption for various purposes, Factor effecting consumption, Analysis Impurities in water, Physical tests, chemical tests, Bacteriological tests. Economics of community water supply, Planning and design of low cost water supply schemes. Water Treatment and Distribution: sedimentation tank, Coagulation, Flocculation, Usual coagulants, Mixing devices, Filtration, Filter sand, Classification of filters, disinfections, Chlorination. Sanitation: purpose of sanitation, Site for sewage treatment work, Water borne and helminth diseases and their control, Health and water chemistry, Planning and design of low cost sanitation. Composting and biogas, sanitation and irrigation, Agriculture and aquacultural reuse.

Practical

Assessment of water supply demand of a community, Design of a water supply project Determination of physical, and chemical characteristics of drinking water, Determination of Bacteriological characteristics (Coliform count) of water and waste water. Visit to a drinking water treatment plant.

Books Recommended
Meteorology and Climate Change 3(2-1)

Practical

Determination of Pressure, Temperature, Humidity, Sunshine hours, Precipitation, Wet and Dry bulb thermometer and other weather parameters in a weather station.

Books Recommended

ENVIRONMENTAL IMPACT ASSESSMENT

SOLID AND WASTEWATER TREATMENT

Practical

Visit of small, medium and large water treatment plants and writing of a report on the functioning and maintenance of the plants.
Visit of wastewater treatment plants in urban areas and writing a report of the visit of plants.

Books Recommended

WATER QUALITY AND POLLUTION

Introduction: Definition and concepts, irrigation and drainage water quality, water quality terminology, water quality objectives, quality criteria and standards for irrigation water carcinogenic/non carcinogenic substances, water quality status in Pakistan.

Water treatment: Water pollution and their sources, water treatment techniques i.e. coagulation, softening, mixing and flocculation, sedimentation, filtration etc.

Drainage Effluents and Management Techniques: Sources of drainage water, characteristics, quality of drainage water, alternates for disposal of drainage water drainage water reuse techniques, crop management, soil management techniques, chemical management techniques, drainage and leaching fractions, concepts of preferential flow.

Agricultural chemicals and Groundwater Contamination: Agricultural chemical, their uses, trends and properties concept of nitrate nitrogen and pesticides transport ;through the soils, behavior of agricultural chemicals in flooded/water logged soils, management practices to avoid groundwater contamination.

Practical

Analysis of drainage water for irrigation purposes.
Waste water analysis for BOP, COD and other chemicals.
Visit to waste water treatment plants, drainage system and drainage reuse sites Use of computer software to assess non-point source pollution.

Books Recommended
3. Rosenberg, N.J. and Blad, B.L. Microclimate. 1983. the biological environment. 2nd edition, John Willey and Sons, N.Y.
Course Title: Engineering Materials Credit Hours: 3(3-0)

Stones

Classification and characteristics of good building stones. Tests of stones. Quarrying and dressing of stones. Artificial stones and its varieties, preservation of stone work.

Tiles and Bricks

Lime and Cement

Concrete and Mortars

Timber

Metals

Composition and properties of ferrous and non-ferrous metals. Effect of various heat treatments on the properties of steel and its alloys. Methods of corrosion control.

Paints, Plasters and Varnishes

Composition, preparation, properties, tests and uses of paints, plasters, varnishes and distemper.

Miscellaneous Materials

Composition, varieties, properties and uses of glass, plastics, Laminates and adhesive. Properties and uses of asphalt, rubber and asbestos.
RECOMMENDED BOOKS

2. Surendra S. 1990 Engineering Materials. Vikas Publishing House (Pvt.) Ltd. 5 Ansari Road, New Delhi 110002
Course Title: Rural Electrification Credit Hours: 3(2-1)

Objective:
- To develop understanding regarding the concept / design of rural electrification project and its usage in various agro based activates, farm structure and house etc.

Content:

Benefits of electricity in agriculture, elementary transmissions and distribution, transformation voltage; basic principles, ratio of transformation, iron and copper losses; regulation, auto-transformers, 3-phase transformers, delta star connections, scot connection, constructional features and cooling of transformers; Electrical wiring practices: farmstead and farm houses; Radiation: types of radiation and application in agriculture; Resistance heating: units advantages and applications; Sensing elements and fundamentals of control: response to environmental factor like temperature, pressure, humidity, radiation etc. Selection of motors: single and three phase; Selection of electrical wires and distribution types; Electrical wiring, electrical distribution systems, electrical panel boards, one-way and two-way wirings/connections, single phase and three phase connections.

Electricity Fundamentals

Nature of electric current, resistance and voltage, effect of temperature on resistance, specific resistance, Ohm’s Law, units of power, arrangements of resistor in series and parallel, Kirchoff’s Laws.

Electric Machines

a). DC Machines

DC generator, working principle, construction and types. DC motors, working principle, construction and types

b). AC Machines

AC generators (Alternators), working principle and construction. AC motors operating principles, single and three phase motors, various types of motors.

c). Transformers

Working principle, construction and types. EMF equation, ratio of transformation.

Electric Instruments

Introduction to electric instruments, types & application of different electric instruments (Potentio-meter, strain gauges, electric transducers)
Farmstead Distribution System

Electric load, types of distribution centers, locating the distribution center, selection of wire for feeder lines.

Electricity for Water Supply and Cooling

Horsepower required for pumping, wiring devices and control, energy cost of water system, refrigeration cycle and refrigeration Control, calculating the product load and space load.

Electricity for Heating

Advantages & disadvantages of electric heating, electric heating elements, electric heating equipment, under heat brooders, infrared brooders, electric hot bed.

Electrical Control and Special Equipments

Switches, relays, push buttons, thermostats, time switches, floating switches, pressure switches, milk cooler, electric fences & feed processing equipments.

Practicals:
1. Safety and precautionary measures of use of electrical appliances in the machinery workshop and field.
2. Study of construction of panels of wiring systems.
3. Study of transformer types.
4. Use of motors for different operations in the machinery workshop at farm buildings.
5. Practice on repair and adjustment of electrical alliances. (motors, switches, fuses etc)
6. Electrical power tools and their application in agriculture and village homes.
7. Verification of Ohm’s Law
8. Verification of Kirchhoff’s Law
9. Verification of Kirchhoff’s Voltage Law
10. To study the construction of a transformer
11. To study the construction of D.C/A.C machine
12. Demonstration of an A.C Series and Parallel circuit
13. Study of the different types of wiring system
Recommended Text Books:

CREATIVITY, Definition of creativity, characteristics of creative mind, need for teaching creativity in present day society, management of creative personnel, qualities of a good researcher and a research manager, creativity in research work, field and industry.

CREATIVITY AND PATENTS: Definition of patent, procedure to get and protect patents. Safety in design of machinery and liability of inventor. Class discussion on creative thoughts. Projects in creativity.

BOOKS RECOMMENDED
