THERMOELECTRIC PROPERTIES OF (CuTi) SUBSTITUTED Ni-Zn FERRITES

M.U. Islam, M. Ashraf Chaudhry, T. Abbas, Atif Abbas, K.A. Hashmi and Saima Khan
Department of Physics, Bahauddin Zakariya University, Multan-60800, Pakistan.

Abstract: A series of Ni_{0.8}Zn_{0.2}Cu_{x}Ti_{x}Fe_{2-2x}O_{4} ferrites with x = 0.0, 0.2, 0.4, 0.6, 0.8 were prepared by ceramic sintering method. The presence of an f.c.c phase has been confirmed by x-ray diffraction. The variation of lattice constant vs. CuTi concentration shows a large positive deviation from the Vegard’s law. Values of room temperature resistivity show a minimum at x = 0, that may be due to the hopping of electron between the ions Fe^{2+} ⇔ Fe^{3+} and Cu^{2+} ⇔ Cu^{+}. Above x = 0 the resistivity increases at higher (CuTi) concentration due to Ti^{4+} ions that act as scattering centers at B-sites. Seebeck coefficient (\alpha) was measured and it shows that the samples are degenerate type semiconductors.

Keywords: Ceramic method, lattice constant, resistivity, thermoelectric power.

INTRODUCTION
Ferrites are ferrimagnetic materials with useful electrical properties. They have a large number of technological applications. They are used in antenna rods, inductors, magnetic cores, filters components etc. Ferrites have very low conductivity, which make them useful for microwave applications [Henaish et al. 1991]. The electrical resistivity of ferrites at room temperature usually depends on their chemical composition [Rana and Islam 1996] and the method of preparation. Islam et al. [2001] has reported electrical properties of Mg-Zn ferrites. Temperature dependent electrical resistivity was measured after final heat treatment in the temperature range 20-200°C that reveals the semi conducting nature of these ferrites. Electrical resistivity and thermoelectric power of Cd_{0.5}Ni_{5+x}Mn_{x}Fe_{2-2x}O_{4} have been studied by Patil et al. [1996]. They showed that at lower Mn concentration (x ≤ 0.2) the increase in dc resistivity with concentration (x) could be attributed to the hindering of Fe^{3+} ⇔ Fe^{2+} transition. The decrease in resistivity with higher concentration was attributed to the formation of Ni^{3+} and to the Mn^{3+} ⇔ Mn^{4+} transition. The observed high value of activation energy for the system under consideration was related to Mn^{3+} Jahn-Teller trapping. The compositional variation of thermo-emf shows n-type conduction for samples with x ≤ 0.2 and p-type conduction for samples with x > 0.2. The n-p type transition was explained by the formation of p-type carriers such as Ni^{3+} and Fe^{2+} cations vacancies.

Bhise et al. [1996] studied the dc resistivity and thermoelectric power for Mn-substituted ferrites with general formula Zn_{0.3}Ni_{0.7+x}Mn_{x}Fe_{2-2x}O_{4}. The increase in dc resistivity at lower concentration of Mn was explained on the hindering of Verway mechanism Fe^{2+} ⇔ Fe^{3+} due to stable bonds of

Mn$^{3+}$ + Fe$^{2+}$ pair. The decrease in resistivity at higher Mn concentration ($x > 0.5$) could be due to the formation of Mn$^{3+}$ cluster and Ni$^{2+}$ ⇔ Ni$^{3+}$ [Van Uitert 1955]. The activation energy values show one to one correspondence with resistivity values. The compositional variation of thermoelectric power shows n-type behavior for the samples with $x < 0.2$ whereas p-type behavior for samples with $x \geq 0.2$. The p-n transition is attributed to the formation of Ni$^{3+}$, Fe$^{2+}$ + vacancies which act as p-type carriers.

Patil et al. [1996] observed that resistivity of Cd$_{0.5}$Cd$_{0.5+x}$Ni$_x$Fe$_2$O$_4$ ($0.5 \leq x \leq 0.4$) ferrites increases slowly up to $x = 0.2$ and monotonously for $x = 0.3$ and 0.4. Samples show regions of activation energies with changing slope at different temperatures.

In this paper thermoelectric properties of Ni$_{0.8}$Zn$_{0.2}$Cu$_x$(CuTi)$_{2-x}$Fe$_{2-2x}$O$_4$ were measured and discussed on the basis of some conduction mechanism in these materials.

MATERIALS AND METHODS

The samples were prepared by standard ceramic sintering technique. Stoichiometric calculations were carried out using the equation:

$$0.8 \text{ NiO} + 0.2 \text{ ZnO} + x \text{ CuO} + x \text{ TiO}_2 + (1-x) \text{ Fe}_2\text{O}_3 \rightarrow \text{Ni}_{0.8}\text{Zn}_{0.2}(\text{CuTi})_x\text{Fe}_{2-2x}\text{O}_4$$

where $x = 0.0, 0.2, 0.4, 0.6$ and 0.8 for five samples under investigation. The calculated amount of raw materials (NiO, ZnO, CuO, TiO$_2$, and Fe$_2$O$_3$) were thoroughly mixed and ground to obtain a good homogeneity. The pellets were formed under a load of 30KN using a hydraulic press. Heat treatment of these samples was carried out for about 25 hours at 800°C and finally all the samples were sintered at 1000°C for 58 hours. Then samples were quenched in air to obtain equilibrium for positions of the cations on A and B sites. Electrical resistivity was measured at different temperatures by two-probe method. Ohmic contacts were developed on both sides of the samples using silver paste. An electrometer model 610 C, a constant dc power supply and a sensitive digital multimeter (Keithley 197A) were used for resistivity measurements. Seebeck coefficient (α) was measured by differential method. In this method a small temperature difference ΔT (20°C) was established across the sample to induce a small thermoelectric voltage ΔV (T). The Seebeck coefficient was then determined from the relation [Islam et al. 2002]:

$$\alpha = \lim_{\Delta T \to 0} \frac{\Delta V(T)}{\Delta T}$$

RESULTS AND DISCUSSIONS

Fig. 1 shows the lattice constant vs. CuTi concentration. It can be seen that lattice constant shows a large positive deviation from Vegard’s Law. This large deviation from Vegard’s Law may be due to anomalous distribution of cations on A and B sites [Philips Research Report 1953].
The variation of room temperature resistivity vs. CuTi concentration is plotted in Fig. 2. At x = 0, the value of resistivity is minimum which may be due to the hopping of electron between Fe^{2+} ⇔ Fe^{3+} and Cu^{2+} ⇔ Cu^{1+}
The increase in resistivity at higher (CuTi) concentration (x > 0.0) may be due to the presence of Ti$^{4+}$ that does not contribute to conduction but acts as a scattering center at B-sites [Bhise et al. 1995, Mazen et al. 1995]. This hinders the Verway mechanism. At x > 0.0 electrical resistivity increases which may be attributed to change of charge species from n to p type [Na et al. 1992, 1993, Abbas et al. 1995].

The thermopower (α) vs. (CuTi) content has been plotted in Fig. 3. It was observed that the thermopower is initially negative and then it becomes positive in all samples. This shows that both types of charge carriers are taking part in the conduction process. The α increases and becomes positive which is indicative of the presence of p-type carriers. It is observed that Verway mechanism is hindered in the present system with the increase of (CuTi) substitution. The variation of α with temperature shows that values of thermo-emf of all the samples depend on temperature, which in turn indicates that these samples belong to the class of degenerate type of semiconductors [Islam et al. 2002].

![Fig. 3: Thermopower (α) vs. (CuTi) concentration for various Ni$_{0.8}$Zn$_{0.2}$ (CuTi)$_x$Fe$_{2-2x}$O$_4$ ferrites.](image)

References

